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Abstract In this review, we present our recent work on making structured metals transparent for broadband

electromagnetic waves by surface plasmons (SPs) or spoof surface plasmons (SSPs). First, we demonstrate that

the interference between the localized and propagating SPs plays an important role in the optical transmission

through arrays of sub-wavelength holes. The observed phenomena belong to the category of plasmonic Fano

effects. Second, we show that the transmission enhancement originates not only from the coupling between

the incident light and the excited SPs but also from the coupling among these SPs in multiple nano-aperture

stacks. Finally, we demonstrate that metallic plates with narrow slit arrays can become transparent within

extremely broad spectral bandwidths, and high transmission efficiency is insensitive to the thickness of the metal.

This phenomenon explicitly demonstrates the conversion between light and SPs. These investigations provide

guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective

solar cells, and other broadband metamaterials.

Keywords transparent metal structures, broadband transmission, surface plasmons
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1 Introduction

Making metals transparent for white light, which could achieve various fascinating applications, has

been expected for a long period. Bulk metals such as gold and silver are naturally opaque to light

because of a large mismatch between the refractive indices of metals and dielectrics. Recently, by creating

structured materials, it became possible to design materials with electromagnetic properties extending

beyond their natural characteristics. For instance, free electrons may induce surface plasmons (SPs)

[1] or spoof surface plasmons (SSPs) in the long-wavelength regime [2] in structured metals. These

SPs can propagate along nano-structures such as nano-holes, nano-slit walls, and nano-wires. When SP

propagation is blocked by geometric boundaries, the SPs may be converted back into light and thus

contribute to optical transmission through the structured metals [3–11]. Related works have generated

much interest in the fields of plasmonics [1], surface-enhanced Raman scattering (SERS) [12,13], and

so on.

∗Corresponding author (email: rwpeng@nju.edu.cn)
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Figure 1 (a), (b) SEM micrographs of arrays of (a) open square apertures and (b) ring-shaped apertures with a central

solid square metal patch. The bar denotes a length of 20 µm; (c), (d) the measured and calculated transmission spectra of

(c) the open aperture array and (d) the ring-shaped-aperture array. The solid lines are the calculated data and the open

circles are the experimental points. The scale for the experimental data is on the left side of the figure, and the scale for

the calculated spectra is on the right side (partially adapted from [11]).

Metallic micro- and nano-structures can be used as building blocks to construct metamaterials [14],

which have been used in the studies of super-lenses [15,16], negative refraction [17,18], optical magnetism

[19–22], high index refraction [23,24], invisibility cloaking [25–27], the manipulation of chirality and

polarization [28–31], and many other interesting phenomena that extend beyond the properties of natural

materials. However, these metamaterials have some common limitations. One of the limitations is the

narrow transmission bandwidths, which typically appear as discrete resonant peaks. Another limitation

is that the transmission efficiency is usually low for thick materials. Therefore, increasing the working

bandwidth and the transmission efficiency remains a major challenge.

In this review, we present our recent work on making structured metals transparent for broadband

electromagnetic waves by surface plasmons (SPs) or spoof surface plasmons (SSPs). First, we demonstrate

the interference between localized and propagating SPs and its effect on optical transmission. Second,

we show that the transmission enhancement originates not only from the coupling between the incident

light and the excited SPs but also from the coupling among these SPs in multiple nano-aperture stacks.

Finally, we show that metallic plates with narrow slit arrays can become transparent within extremely

broad spectral bandwidths, and high transmission efficiency is insensitive to the thickness of the metal.

We expect that these investigations will provide guidelines to develop novel opto-materials and devices.

2 Interference between localized and propagating SPs and its role in the
optical transmission through a subwavelength-aperture array

In this section, we show that when the light is incident on a metal surface with a sub-wavelength-aperture

array, the phase difference between the propagating and localized SPs can be tuned by the geometrical

parameters of the array [11,32,33]. This plasmonic Fano effect eventually affects the optical transmission

in sub-wavelength hole systems [11].

Two types of aperture arrays are fabricated on gold films through photolithography. The first type con-

sists of open square apertures (Figure 1(a)). The second type is a square array of ring-shaped apertures

(Figure 1(b)). In the case of an open square aperture (Figure 1(a)), four peaks appear (see Figure 1(c)),

while in the case of a ring-shaped aperture (Figure 1(b)), some modes are enhanced but some are sup-

pressed (Figure 1(d)). Below the resonance frequency of an individual aperture (ν0) [11], enhanced

transmission (peak) appears at the specific frequencies owing to the constructive interference between

the propagating and localized SPs, while above ν0, suppressed transmission (dip) is observed owing to

the destructive interference between those SPs. Thus, by tuning either the aperture configuration or

the lattice parameter of the aperture array it is possible to change both the position of transmission
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Figure 2 (a)–(c) The measured and calculated transmission spectra of the ring-shaped aperture arrays with different

lattice parameters: (a) 8.0 µm, (b) 6.0 µm, and (c) 4.0 µm. Here, the bars in each inset denote a length of 30 µm; (d)–

(f) the measured and calculated transmission spectra of the ring-shaped aperture arrays with different central patch sizes:

(d) 0.6 µm, (e) 0.8 µm, and (f) 1.0 µm. Here, the lattice parameter and the outer rim of the aperture were kept identical

in all cases. The bar in the inset denotes a length of 20 µm. The dotted line illustrates the resonant property of each

individual aperture, the resonant frequency of which is marked by the gray arrow. The calculated spectra are indicated by

solid lines, and the experimental data are indicated by open circles (partially adapted from [11]).

peaks/dips and the resonance frequency of the individual aperture (ν0).

As illustrated in Figure 2 (a)–(c), the extrema in the transmission spectra can be changed from peaks

to dips and vice versa by adjusting the configuration of the aperture array. The transmission spectra

can also be tuned by changing the aperture configuration. For example, if the dimensions of all central

square patches are reduced, the resonance frequency of an individual aperture, ν0, increases. As a result,

some dips in previous transmission spectra become peaks (as shown in Figure 2 (d)–(f)).

Therefore, we have demonstrated that when the light is incident on a metal surface perforated with

a sub-wavelength-aperture array, the phase difference between the propagating and localized SPs can

be tuned using the geometrical parameters of the array, which eventually affect the optical transmission

[11,32,33]. Above the resonant frequency of the individual aperture, destructive interference between

the two types of SPs leads to the appearance of a minimum in the transmission spectra, while below

the resonant frequency of the individual aperture, constructive interference of these SPs leads to the

appearance of a maximum. The observed phenomena belong to the category of plasmonic Fano effects.

We suggest that this feature of sub-wavelength aperture arrays can be applied to the engineering of

surface-wave-based all-optical devices.

3 Coupling of SPs influences the optical transmission in multiple
nano-aperture stacks

In this section, we show that the transmission enhancement of light originates not only from the coupling

between the incident light and the excited SPs but also from the coupling among these SPs in the Ag/SiO2

multilayer within a periodic sub-wavelength-aperture array [34,35].

First, we present the optical properties of the silver film with periodic arrays of sub-wavelength aper-

tures, for the following three cases. (1) The silver film is free-standing and the apertures are in vacuum;

this case is termed the “A-Ag-A” case. (2) The silver film is sandwiched by the SiO2 film, and the aper-

tures are also filled with SiO2; this case is termed the “Q-Ag-Q” case. (3) The silver film is sandwiched

between vacuum and SiO2, and the apertures are in vacuum; this case is termed the “A-Ag-Q” case.

When light illuminates these structured silver films, optical transmission and reflection can be calculated

by using the full vectorial three-dimensional (3D) finite-difference time-domain (FDTD) method. Fig-
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the silver film is sandwiched by SiO2 films and the apertures

are also filled with SiO2; (c) the “A-Ag-Q” case, i.e., the

silver film is sandwiched between vacuum and SiO2 and the

apertures are in vacuum. Each structure has a 100-nm-thick

silver layer, an aperture array of periodicity 600 nm, and

apertures of diameter 150 nm (partially adapted from [34]).
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case, and (c) the “A-Ag-Q” case. The scanning electronic
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diameter 150 nm. Main peaks are indexed by two inte-

gers and the dips are marked by “AR” (partially adapted

from [34,35]).

ure 3 illustrates the transmission and reflection spectra obtained at the normal incidence for three types

of films considered above. Transmission peaks and reflection dips can be clearly identified at optical

frequencies.

It is of interest to note that in a dielectric/structured metal/dielectric sandwich, the SPs on one metal-

dielectric interface may couple with those on the other interface. If the SPs on both interfaces belong to

the same mode, their coupling will lead to the enhancement of the transmission. If, however, the SPs on

different interfaces belong to different modes, their coupling will result in a blue shift of the transmission

modes. Owing to the fact that the coupling of SPs is influenced by the thickness of the metallic film, the

extent of the blue shift of the transmission peak depends on the thickness of the metallic film [34]. The

experimental results shown in Figure 4 are in good agreement with the results of numerical calculations.

Now, we focus on how the coupling of SPs influences the optical transmission in multiple nano-aperture

stacks. A multiple nano-aperture stack is constructed by defining the following two layers as a building

block: one layer is a silver film with a periodic array of sub-wavelength SiO2 holes; the other is a

film of SiO2. Figure 5 illustrates a schematic of nano-structured Ag/SiO2 multilayer films and their

experimental and calculated optical transmission spectra. Two interesting features are observed. First,

by increasing the repeating number of building blocks, new resonant modes may be obtained in the

transmission spectra. Second, the quality factor of the transmission peak can be significantly increased

by increasing the number of building blocks. These features may originate from multiple scatterings and

also the coupling effect of light waves in multilayer systems.

In order to illustrate multiple scatterings of electromagnetic wave and also the coupling effect in the

multilayer structure, we have calculated the electric-field distribution of mode Q(3,1) in several multilayer

structures, as shown in Figure 6. It is clearly indicated that the coupling of SPs possesses collective

behavior and dramatically influences the optical transmission through the multilayers

Therefore, we have demonstrated that the enhancement of optical transmission originates not only

from the coupling between the incident light and excited SPs but also from the coupling among excited

SPs in multiple nano-aperture stacks [34,35]. The coupling of SPs is strongly dependent of the detailed
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Figure 5 (a) A schematic of a nano-structured Ag/SiO2 multilayer film; (b)–(i) the FDTD calculated and experimentally

measured transmission spectra of samples with: (b) and (f) n = 1 and t = 100 nm; (c) and (g) n = 2 and t = 200 nm; (d)

and (h) n = 3 and t = 300 nm; (e) and (i) n = 4 and t = 400 nm, where n is the repeating number of building blocks and

t is the total thickness of the film. Each building block contains two layers: a 50-nm-thick SiO2 layer and a 50-nm-thick

silver film with a periodic sub-wavelength aperture array. The lattice parameter of the aperture array is 600 nm, and the

diameters of apertures are 150 nm. The incident light is normal to the film (partially adapted from [34]).

nanostructure of a film. In a structured metal–dielectric sandwich, the coupling of SPs can cause a shift

of transmission peaks, which dramatically decreases when the thickness of the silver film is increased.

On the other hand, in the nanostructured metal–dielectric multilayers, the coupling of SPs can induce

new resonant modes and increase the quality factors of transmission peaks. Physically these properties

originate from multiple scatterings and the coupling effect of light waves in these structures. We suggest

that these features may have potential applications in the design of subwavelength optoelectronic materials

and devices.

4 Making structured metals transparent for broadband electromagnetic
waves by surface plasmons or spoof surface plasmons

We now describe the attempts to expand the spectral bandwidth of operation and increase the efficiency

of transmission for applications. In this section, we demonstrate that metallic gratings with narrow slits

can become non-dispersively transparent to broadband electromagnetic waves [6,7].

As is known, a one-dimensional metallic grating (Figure 7(a)) is one of the simplest plasmonic meta-

materials. Let us define the grating period, the grating thickness, and the slit width as d, τ , and W ,

respectively. It is found that when light is incident on the metallic grating in an angular range of oblique

incidence, the grating becomes transparent to TM polarization in the entire long-wavelength region (Fig-

ure 7(b)). This phenomenon of broadband transmission can be understood at the microscopic level

(Figure 7). The incident wave drives the free electrons on the metallic surfaces and a part of the slit walls

to form SPs (or SSPs). These excited SPs (or SSPs) propagate along the slit walls but are blocked by

the bottom edges, forming oscillating positive and negative charges. The oscillating charges eventually

emit the transmitted wave. The transmission efficiency reaches a maximum [6] at an optimal incidence

angle of θf ≈ arctan (d/W − 1).



Meng C, et al. Sci China Inf Sci December 2013 Vol. 56 120404:6

n=2                     n=3                     n=4

Y
 (
µm

)

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

0.0

0.2

0.4

4.0
3.2
2.4
1.6
0.8
0.0

−0.2  0.0   0.2     −0.2  0.0   0.2      −0.2  0.0   0.2
X (µm)

(a1) ct=0.00 µm      (b1) ct=0.00 µm     (c1) ct=0.00 µm

(a2) ct=0.01 µm      (b2) ct=0.04 µm     (c2) ct=0.02 µm

(a3) ct=0.08 µm      (b3) ct=0.12 µm     (c3) ct=0.09 µm

(a4) ct=0.16 µm      (b4) ct=0.19 µm     (c4) ct=0.20 µm

(a5) ct=0.20 µm      (b5) ct=0.24 µm     (c5) ct=0.27 µm

(a6) ct=0.29 µm      (b6) ct=0.29 µm     (c6) ct=0.29 µm

Figure 6 The calculated electric-field distribution of the Q(3,1) mode in several nano-structured multilayer films, in which

the TM-polarized light illuminates the multilayer from top to bottom. In one temporal period, the electric-field distributions

of the Q(3,1) mode are shown in the multilayer film for: (a1)–(a6) n = 2, (b1)–(b6) n = 3, and (c1)–(c6) n = 4. Here, n

represents the repeating number of building blocks in the multilayer, t is the time in a temporal period, and c is the speed

of light in vacuum (adapted from [34]).
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Figure 7 (a) The schematic of light tunneling by driving the free electrons on the metallic surfaces and slit walls; (b) the

calculated transmission spectra of TM-polarized light passing through two gold gratings with the same period d = 0.5 mm,

the same slit width W = 0.05 mm, but different thicknesses (τ = 0.43 mm (red curve) and τ = 1.1 mm (blue curve)), at the

optimal angle of incidence. The transmission spectra in the shorter wavelength range are shown in the inset, where the sharp

transmission dips arise from Wood anomalies. The typical charge-density distributions, calculated at the high-transmission

region: (c) normal incidence, and (d) optimal incidence with θf (partially adapted from [7]).
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Figure 8 (a) Optical image of the metal grating with d = 0.5 mm, W = 0.15 mm, and τ = 0.34 mm. The inset illustrates

the cross-section; (b) schematic setup for experimental measurements in the THz regime, where EMT represents the THz

emitter, DET represents the THz detector, and the dashed-line box is an N2 purging box; (c) the measured time-domain

THz transmission signals at different incident angles of the THz wave. (d) Average transmission efficiency for wavelengths

in the range of 1.05 mm � λ � 1.5 mm. (e) The measured and the calculated transmission spectra. Note that the spectral

region in which the strong and flat broadband transmission occurs corresponds to the wavelengths larger than the 1st Wood

anomaly, marked by a navy-blue arrow (adapted from [7]).

In the experiments, we have fabricated different metallic gratings for transmission measurements in the

terahertz (THz) frequency range. As shown in Figure 8, Fabry-Perot resonances are observed at normal

incidence. However, at oblique incidence, the long-wavelength transmission increases gradually as the

angle of incidence (θ) is increased. At θ = 68◦, transmittance becomes significantly strong and nearly

flat in the whole range of wavelengths satisfying λ > λWD1 (where λWD1 corresponds to the first-order

Wood anomaly), and the values of transmission efficiency reach T0 ∼ 83% (measured) and 99% (calcu-

lated). Therefore, we confirmed that metallic gratings become highly transparent to ultra-broadband

long-wavelength electromagnetic waves at oblique incidence. Additional experiments [7] indicate that

the ultra-broadband transmission is insensitive to the grating thickness, but the Fabry-Perot resonance

sensitively depends on the thickness.

Therefore, metallic gratings with narrow slits can become highly transparent for ultra-broad band-

widths at oblique incidence [6,7]. The ultrabroadband optical transmission is verified both experimen-

tally and theoretically for the structured metals with significant thickness. Interestingly, the transmission

efficiency is insensitive to the thickness of metal. These metal gratings then possess both advantages:

high-efficiency transmission and high-performance electrical properties. Our investigations have demon-

strated a simple yet efficient way to make ultrabroadband transparent metals, and also to achieve the

applications on stealth technologies and antireflection solar cells, etc. The underlying physics may also

shed new light on widening the spectral bandwidths and increasing of the efficiency of more complicated

artificial materials, including acoustic metamaterials [36].
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5 Conclusion

In this paper, we review our recent work on making structured metals transparent for broadband electro-

magnetic waves by SPs (or SSPs). First, we have demonstrated the interference between localized and

propagating SPs and its effect on the optical transmission through subwavelength-hole arrays [11,32,33],

which belongs to plasmonic Fano effects. Second, we have presented that the enhancement of optical

transmission originates not only from the coupling between the incident light and the excited SPs, but

also from the coupling among those SPs in multiple nanoaperture stacks [34,35]. Third, we have demon-

strated that the metallic plates with narrow slit arrays can become transparent for ultra-broad spectral

bandwidths, and high transmission efficiency is insensitive to the metal thickness [6,7]. The conversion

between light and SPs is explicitly presented in the observed phenomena. The investigations provide a

guideline to develop many novel materials and devices, including transparent conducting panels, antire-

flective solar cells, white-beam polarizers, and other broadband metamaterials.

Finally, it is worthwhile to emphasize that some alternative resonant or non-resonant mechanisms have

been developed to make metals transparent. For example, Zhou et al. have achieved a transparent but

continuous (apertureless) metal film via the scattering cancellation mechanism [37,38]. Shuang and co-

authors [39] have demonstrated electromagnetically induced transparency (EIT) in metamaterials. These

works have also significantly contributed to a rapid advancement in transparent structured metals. The

investigations are achieving applications in the areas such as plasmonics, SERS, and metamaterials.
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