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We explore an analogue of optical frequency combs in driven nonlinear phononic systems, and present a
mechanism for generating phononic frequency combs through nonlinear resonances. In the underlying
process, a set of phonon modes is simultaneously excited by the external driving which yields frequency
combs with an array of discrete and equidistant spectral lines of each nonlinearly excited phonon mode.
Frequency combs through nonlinear resonance of different orders are investigated, and in particular the
possibility of correlation tailoring in higher-order cases is revealed. We suggest that our results can be
applied in various nonlinear acoustic processes, such as phonon harvesting, and can also be generalized to
other nonlinear systems.
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An optical frequency comb (FC) is a light source whose
spectrum consists of a series of discrete, equally spaced
elements. It has become an important coherent optical
source with diverse applications, ranging from optical
frequency metrology to ultracold gases [1,2]. The nonlinear
parametric frequency conversion in microresonators of
high resonance quality factor [3], manifests itself as a
promising generating principle of FCs. In the underlying
generating process, a continuous-wave (cw) laser is intro-
duced to a microresonator, and is subsequently converted
into the eigenmodes of the resonator with discrete,
equidistant spectral lines. Despite the fact that phonons
can be analogized to photons in many aspects, nonlinear
dispersion relations of phonons prevent a direct analogue of
optical FCs in phononic systems. In this Letter we provide a
novel mechanism for the generation of FCs independent of
the dispersion relation, and demonstrate its existence in a
phononic nonlinear system, i.e., the Fermi-Pasta-Ulam α
(FPU-α) chain.
The FPU-α (β) chains [4], containing triplet (quadruplet)

nonlinear terms, manifest themselves as an ideal test bed
of nonlinear phenomena, and the response of FPU-α (β)
chains to external influence has been widely studied. The
thermal equilibration and heat transport of chains coupled
to a thermal reservoir [5–7], various nonlinear excitations,
such as solitons [8,9], and the supertransmission [10,11]
of FPU-α (β) chains under monochromatic driving are
the representative phenomena of driven FPU systems.
Nonlinear resonances (NRs) can take place between exter-
nal driving and intrinsic phonon modes in driven FPU
systems, and the corresponding phonons are simultane-
ously excited by external driving, when the driving fre-
quency matches the sum of the eigenfrequencies of a set of
phonons. The nonlinear resonance serves as the source of
FCs being proposed in this Letter, and we will discuss the

generation of FCs through NR of different orders. The
FPU-α chain is a nonlinear three-wave-mixing system, and
the first-order NR refers to a pair of phonon modes
simultaneously excited, which hereafter is called a direct
nonlinear resonance (DNR). The second-order NR, in
which a triple pair of phonon modes is excited by a cluster
of nonlinear terms, is called a cluster nonlinear resonance
(CNR). Once a phonon interacts strongly with atoms in a
one-dimensional nonlinear system, its energy is converted
into two or more parts, and two or more additional phonons
are excited. This process is well known for photons, but
it remains uncommon for phonons [12,13]. Harvesting
phonons may have potential applications on acoustic
amplification by stimulated radiation (analogous to lasers),
thermal information transfer, nonlinear acoustics, and even
for the entanglement of phonons.
In this Letter we consider an N-site FPU-α chain with a

monochromatic driving force of strength f and frequency
ωd applied to the first site, which manifests as a driving for
all phonon modes. With fixed boundary conditions on both
ends of the chain, the Hamiltonian can be written in the
phonon mode picture [14] as

H ¼
XN

i¼1

�
P2
i

2
þ ω2

i Q
2
i

2
þ fi cosðωdtÞQi

�

þ
X

i;j;k

αBijk

2ðN þ 1ÞQiQjQk: (1)

The first term describes the linear phonon under
monochromatic driving, and QiðPiÞ is the canonical
coordinate (momentum) of the phonon, with fi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðN þ 1Þp

f sin½πi=ðN þ 1Þ�. The second term is the
nonlinear phonon interaction term, with Bijk ¼
ðδi�j�k;0 − δi�j�k;2ðNþ1ÞÞ, where all possible sign combi-
nations are allowed. Dimensionless units are used, so the
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mass, the linear coupling constant, and the spacing of atoms
in the chain are set to unity. The phonon mode frequency is
given as ωi ¼ 2 sin ½πi=2ðN þ 1Þ� for the fixed boundary
conditions, while the effects discussed here are expected
not to depend significantly on the choice of boundary
conditions. We demonstrate here the existence and provide
the physical properties of phononic FCs both analytically
and numerically via the Poincaré-Lindstedt (PL) perturba-
tion method [15] and time-integration of the classical
equations of motion based on a Runge-Kutta method,
respectively. In the numerical simulations FPU-α chains
of 10 and 200 sites are considered.
Frequency combs through DNR.—The DNR of a driven

FPU-α chain refers to the excitation of a pair of phonon
modes (PMs) (Qi, Qj), when the frequency matching
condition ωd ≈ ωi þ ωj is fulfilled. Hereafter we denote
PMs (Qi;…; Ql) as Qi;…;l. ωd is set beyond the dispersion
band of the chain, in order to avoid the linear excitation of
phonon modes close to ωd. In addition to the nonlinear
dispersion relation, we also assume Qi;j to form the only
pair of modes, which is in nonlinear resonance with the
external driving.
Let us consider a general DNR of Qi;j and assume this

pair is coupled by the nonlinear term α=2ðN þ 1ÞQiQjQk.
Now the DNR can be understood within the truncated
phase space spanned by the three Qi;j;k. Applying the PL
method in the truncated space [15], QiðjÞ is obtained as

QiðjÞ ¼ AiðjÞ
0 cosð ~ωiðjÞtÞ þ

X

p≠0
AiðjÞ
p cosð ~ωiðjÞ þ pΔωÞt; (2)

with the amplitude AiðjÞ
p ∼ ½ ~ω2

iðjÞ − ð ~ωiðjÞ þ pΔωÞ2�−1 and
~ωiðjÞ being the renormalized intrinsic frequency of QiðjÞ.
The solution (2) demonstrates that an array of equidistant
spectral lines arises around the intrinsic frequency in the
solutions of Qi and Qj with spacing Δω ¼ ωd − ~ωi − ~ωj.
These equidistant spectral lines manifest themselves as a
new type of FC structure.
The generating process of FCs through DNR takes place

when the summation mode of the external driving is
suppressed by choosing the driving frequency beyond
the dispersion band, and the driving can only excite
eigenmodes Qi and Qj with ωd ≈ ωi þ ωj. On top of such
a NR process, the frequency difference Δω gives rise to a
cascadelike generation of subspectral lines around ~ωiðjÞwith
equal distance Δω, i.e., the FCs. Comparing this to the
existing generating mechanisms for FCs, such as para-
metric conversion in microcavities and higher harmonic
generation in surface acoustic wave systems [16], FCs
through DNR can greatly reduce the frequency separation
between the spectral lines. This opens the possibility to
improve precision in frequency metrology.
The FCs predicted by the PL method are confirmed by

numerical simulations of a FPU-α chain of 10 sites, as shown
inFig. 1.All numerical simulations in this Letter are based on
the complete Hamiltonian (1), and no truncation is applied in
the simulations. We tune the external driving to let PMs Q1

and Q10 in nonlinear resonance. The DNR of these two
modes is quantified by their effective phonon number
Neff ¼ ðP2

i þ ω2
i Q

2
i Þ=ð2ωiÞ, which is essentially the energy

of themodes divided by the intrinsic frequency. The temporal
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FIG. 1 (color online). Illustrations of DNR FCs of Q1;10 in a ten-site FPU-α chain, with Neff oscillations of all PMs shown in (a), and
the spectra ofQ1;10 in (b) and (c), respectively. Neff oscillation ofQ1;10 overlap, and the oscillation amplitude of other PMs is at least one
order of magnitude smaller than those of Q1;10. Parameters are ðf; α;ωdÞ ¼ ð0.1; 0.1; 2.264Þ, and the frequency spectra are obtained by
fast Fourier transformation of Q1ð10ÞðtÞ.
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evolutions of Neff of Q1;10 are shown in Fig. 1(a), and
identical trains of temporal pulses are observed for the two
modes. Such pulse trains arise exclusively for Q1;10 and
manifest themselves as the temporal fingerprint of FCs, of
which the pulse period is given byT ¼ 2π=Δω. The FCs can
be more directly seen in the spectra of Q1;10, as shown in
Figs. 1(b) and1(c), respectively,where anarrayof equidistant
spectral lines (the FC) is observed in each figure. The
numerical simulation, in this way, provides a clear temporal
and spectral signature of the FCs. As also depicted in Fig. 1,
the DNR FCs of Q1;10 represent a dominating process:
the amplitudes of other PMs are at least one order of
magnitude smaller, thereby justifying the truncation of the
small amplitude nonresonant modes, as applied in PL
treatment.
It is important to study the dependence of ~ωiðjÞ on ωd.

Though it is difficult to analytically derive ~ωiðjÞ in PL
method, as this involves solving highly nonlinear equa-
tions, a qualitative understanding can be obtained by the
equations for ~ωiðjÞ with the lowest order renormalization,

~ω2
iðjÞ − ω2

iðjÞ ¼ − F2
k ~ω

2
jðiÞ

2ω2
jðiÞ½ ~ω2

jðiÞ − ðωd − ~ωiðjÞÞ2�
; (3)

with Fk ¼ fk=ðω2
k − ω2

dÞ. Without explicitly solving the
equations, we can see that ~ωiðjÞ strongly depends on ωd,
and particularly the renormalization of the intrinsic fre-
quency becomes larger when ωd approaches the resonance,
which effectively shifts the resonant point from ωd. There
are various mechanisms of frequency normalization in
nonlinear phononic systems, such as that induced by the
external-field [17,18] and that induced by thermal equilib-
rium [19]. Different from these mechanisms, here the
renormalization in equation (3) is induced by the NR
foldover effect [20].

Figure 2 shows numerical simulations on the generation
of FCs of Q1;10. Since the dynamical behavior of the two
modes is almost identical, here we show the results for Q1

only. Figures 2(a) and 2(b) illustrate the dependences of
FCs of Q1 on driving frequency ωd and driving force f,
respectively. In Fig. 2(a), the evolution of the spectrum can
be divided into three different regimes with respect to ωd,
with two off-resonant and one resonant regime. In the
off-resonant regimes of Fig. 2(a), two frequency branches,
~ω1 and ωd − ~ω10, can be identified, which resemble the
PL solution up to the first-order perturbation theory. As
approaching the resonant regime, a sharp transition to the
comb structure occurs, and all the spectral lines become
strongly dependent on ωd, indicating the renormalization
effect of equation (3). Fig. 2(b) shows that the separation
of the combs can be tuned by the strength of the external
driving, and a linearlike dependence is observed, which
indicates a high tunability of the phononic FCs. The
phononic FCs via DNR require a weak external driving,
and Fig. 2 shows that FCs via DNR arise in a narrow
resonant frequency window over a relatively broad regime
of the driving strength f.
Frequency combs in CNR.—In an FPU-α chain, higher-

order nonlinear resonances can occur with simultaneous
excitation of more than two phonon modes. Such NRs
occur via a cluster coupling of multiple nonlinear terms,
and is termed as cluster nonlinear resonance (CNR). The
CNR resembles the resonance clustering in the evolu-
tionary dispersive wave systems [21,22] and also the
effective many-body interactions intermediated by virtual
excitations [23]. We demonstrate here the generation of
FCs via CNR of a triplet pair of phonons.
The CNR of a triplet pair Qi;j;k and the consequent

generation of FCs can also be interpreted by the PL
method. The nonlinear resonance channel for a triplet pair
with external driving is built by a series of nonlinear
terms; for instance, the triplets Q1;2;8 and Q1;3;5 are
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FIG. 2 (color online). The frequency spectrum of Q1 versus the external driving frequency ωd (a) and the driving strength f (b) in the
vicinity of the DNR of Q1;10, with the encoded color indicating the power of the spectrum.
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coupled to the external driving by the cluster channels
(Q1Q1Q2, Q1Q2Q3, Q2Q3Q5, Q3Q5Q8) and (Q1Q2Q3,
Q2Q3Q5), respectively. Applying the PL method in the
truncated space spanned by triplet and intermediate
phonons leads to a FC solution for the triplet, as Q0

α ¼P
nA

0
α;n cosð ~ωα − nΔωijkÞt, Δωijk ¼ ωd − ~ωi − ~ωj − ~ωk,

with the amplitudes A0
α;n ∼ ½ ~ω2

α − ð ~ωα − nΔωÞ2�−1. At
resonance Δωijk ≈ 0, the amplitudes diverge and the
CNR of Qi;j;k takes place with a series of spectral lines
in the spectra of Qi;j;k, and FCs arise in the spectra of the
triplet phonons.
More importantly, the detailed properties of CNR

channels give rise to additional terms in even higher-order
expansions, and modify the comb structure. Taking the
CNR of Q1;2;8, for instance, higher-order expansions
of the PL method predict a satellite comb Q1

α ¼P
nA

1
α;n cosð ~ωα ∓ Δω0 − nΔωÞt (Δω0 ¼ ~ω2 − 2 ~ω1,

α ∈ f1; 2g), which is attributed to the nonlinear term
Q1Q1Q2 and provides additional correlation of Q1 and
Q2. As this additional correlation is exclusively between
Q1 and Q2, such satellite combs appear in the spectra
of Q1 and Q2 only, but not Q8. This example demon-
strates the possibility of correlation tailoring in the CNR
frequency comb generation by simply choosing triplet PM
pairs with particular correlations in the CNR channels.

Figure 3 shows numerical results for FCs of Q1;2;8 and
Q1;3;5 generated via related CNRs. In Fig. 3(a), oscillations
of Neff of Q1;2;8 present a twofold structure on different
time scales. First, on the long time scale, a train of broad
pulses appears for each mode, whereas a fast oscillation of
large amplitude can be observed within each broad pulse
of Q1 and Q2 that measures a short time scale. The inset
of Fig. 3(a1) illustrates fast oscillations of Q1 and Q2

in a broad pulse, with a π phase shift between the fast
oscillations of the two PMs. Correspondingly, in the
spectrum of each mode, there arises a main comb around
the intrinsic frequency, and an additional satellite comb also
appears in the spectra of Q1 and Q2. The temporal broad
pulses of the three PMs are related to the main combs of
these modes, and the fast oscillations of Q1 and Q2 within
the broad pulse are attributed to the appearance of the
satellite combs. The π phase shift of the fast oscillations of
Q1 and Q2 is given by the opposite location of the satellite
combs with respect to the main combs. The above temporal
and spectral properties are in agreement with the prediction
of the PL method.
In Fig. 3(b) we observe a train of broad pulses with

relatively small fluctuation for the Neff oscillations of
Q1;3;5, and there is only one main comb in the spectrum
of each PM, as shown in Figs. 3(b1)–3(b3). The small
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FIG. 3 (color online). CNR FCs ofQ1;2;8 andQ1;3;5. (a) and (a1)–(a3) show Neff oscillations ofQ1;2;8 and the spectra of corresponding
PMs, respectively. (b) and (b1)–(b3) present Neff oscillations and corresponding spectra of Q1;3;5, respectively. The inset of (a1) shows
the detailed structure of Q1 and Q2 within one broad pulse.
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fluctuation is induced by multiple intermediated couplings
in the resonance channels. The difference between the CNR
of Q1;3;5 and that of Q1;2;8 is due to the absence of
additional correlations in the CNR channel of Q1;3;5.
Such differences in the CNR FCs demonstrate that the
generating principle of FCs via nonlinear resonances can
quantitatively tune the spacing and location, and qualita-
tively tailor the correlation as well.
The FCs generated through NR are robust with respect to

intrinsic decoherent channels induced by nonlinear cou-
plings between the NR PMs and the rest. To demonstrate
this feature, we numerically investigate the DNR FC in an
FPU-α chain with 200 sites, which possesses more deco-
herent channels than the 10-site model. The results are
shown in Fig. 4, where a temporal and spectral fingerprint
of FCs can be easily identified.
To conclude, we introduce here a new mechanism in

generating FCs via nonlinear resonances. The universality
of NRs in various nonlinear systems, ranging from
mechanical cantilevers and chains of vibrators to nonlinear
optics, suggests that the FCs via NRs occur in many
nonlinear systems. In particular, the controllability of
FCs via NRs provides a new approach in optimizing
energy conversion rate in phonon harvesting. Moreover,
NRs also exist in quantum nonlinear systems, e.g., quantum
FPU chains, where QiðPiÞ become noncommuting oper-
ators, suggesting that it is possible to generalize FCs to
quantum nonlinear systems and possess applications in the
entanglement of phonons.

L. S. C. would like to thank Andrey Matsko for inspiring
discussions on phononic frequency combs, as well as Chang
Guoqing and his colleagues for sharing knowledge onoptical
frequency combs. This work has been supported by the
MOST of China (Grants No. 2012CB921502 and

No. 2010CB630705) and the NSFC (Grants
No. 11034005, No. 11321063, No. 91321312). P. S.
acknowledges financial support by the Deutsche
Forschungsgemeinschaft (DFG) through the excellence
cluster The Hamburg Centre for Ultrafast Imaging—
Structure, Dynamics, and Control of Matter on the
Atomic Scale.

*lcao@physnet.uni‑hamburg.de
†rwpeng@nju.edu.cn

[1] T. Udem, R. Holzwarth, and T.W. Hänsch, Nature (London)
416, 233 (2002).

[2] S. T. Cundiff and J. Ye, Rev. Mod. Phys. 75, 325 (2003).
[3] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, Science

332, 555 (2011).
[4] E. Fermi, J. Pasta, S. Ulam, and M. Tsingou, in The Many-

Body Problems, edited by D. C. Mattis (World Scientific,
Singapore, 1993).

[5] P. Poggi, S. Ruffo, andH.Kantz, Phys.Rev. E 52, 307 (1995).
[6] B. Li, H. Zhao, and B. Hu, Phys. Rev. Lett. 86, 63 (2001).
[7] S. Lepri, R. Livi, and A. Politi, Phys. Rep. 377, 1 (2003).
[8] H. Zhao, Z. Wen, Y. Zhang, and D. Zheng, Phys. Rev. Lett.

94, 025507 (2005).
[9] N. Li, B. Li, and S. Flach, Phys. Rev. Lett. 105, 054102

(2010).
[10] F. Geniet and J. Leon, Phys. Rev. Lett. 89, 134102 (2002).
[11] R. Khomeriki, S. Lepri, and S. Ruffo, Phys. Rev. E 70,

066626 (2004).
[12] D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, IEEE

Trans. Ultrason. Ferroelectr. Freq. Control, 52, 584 (2005).
[13] F. Cottone, H. Vocca, and L. Gammaitoni, Phys. Rev. Lett.

102, 080601 (2009).
[14] S. Flach, M. V. Ivanchenko, and O. I. Kanakov, Phys. Rev.

Lett. 95, 064102 (2005); Phys. Rev. E 73, 036618 (2006).
[15] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.112.075505 for the de-
tailed application of the PL method.

[16] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel,
and L. Maleki, Opt. Lett. 36, 3338 (2011).

[17] L. S. Cao, R. W. Peng, and Mu Wang, Appl. Phys. Lett. 93,
011908 (2008).

[18] D. X. Qi, R. W. Peng, L. S. Cao, Q. Hu, R. L. Zhang, X. R.
Huang, and Mu Wang, Phys. Rev. B 85, 214123 (2012).

[19] B. Gershgorin, Y. V. Lvov, and D. Cai, Phys. Rev. Lett. 95,
264302 (2005); Phys. Rev. E 75, 046603 (2007).

[20] H. K. Khalil, Nonlinear Systems (Prentice Hall, New York,
2002), 3rd ed.

[21] E. Kartashova, Nonlinear Resonance Analysis (Cambridge
University Press, Cambridge, England, 2010).

[22] M. D. Bustamante and E. Kartashova, Commun. Comput.
Phys. 10, 1211 (2011).

[23] P. R. Johnson, E. Tiesinga, J. V. Porto, and C. J. Williams,
New J. Phys. 11, 093022 (2009).

0 2 41 3 5

x 10
6

0

100

200

50

150

250

time

N
ef

f
PM 20

PM 170

0.0565 0.0567
0

3

6

x 10
−3

0.2036 0.2038
0

0.005

0.01

ω

FIG. 4 (color online). DNR FCs ofQ20;170 of an FPU-α chain of
200 sites. The main graph shows the oscillation NeffðtÞ of both
PMs, and oscillation of the two modes lies on top of each other.
The insets present the frequency spectra of Q20;170, respectively.

PRL 112, 075505 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 FEBRUARY 2014

075505-5

http://dx.doi.org/10.1038/416233a
http://dx.doi.org/10.1038/416233a
http://dx.doi.org/10.1103/RevModPhys.75.325
http://dx.doi.org/10.1126/science.1193968
http://dx.doi.org/10.1126/science.1193968
http://dx.doi.org/10.1103/PhysRevE.52.307
http://dx.doi.org/10.1103/PhysRevLett.86.63
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1103/PhysRevLett.94.025507
http://dx.doi.org/10.1103/PhysRevLett.94.025507
http://dx.doi.org/10.1103/PhysRevLett.105.054102
http://dx.doi.org/10.1103/PhysRevLett.105.054102
http://dx.doi.org/10.1103/PhysRevLett.89.134102
http://dx.doi.org/10.1103/PhysRevE.70.066626
http://dx.doi.org/10.1103/PhysRevE.70.066626
http://dx.doi.org/10.1109/TUFFC.2005.1428041
http://dx.doi.org/10.1109/TUFFC.2005.1428041
http://dx.doi.org/10.1103/PhysRevLett.102.080601
http://dx.doi.org/10.1103/PhysRevLett.102.080601
http://dx.doi.org/10.1103/PhysRevLett.95.064102
http://dx.doi.org/10.1103/PhysRevLett.95.064102
http://dx.doi.org/10.1103/PhysRevE.73.036618
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.075505
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.075505
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.075505
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.075505
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.075505
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.075505
http://link.aps.org/supplemental/10.1103/PhysRevLett.112.075505
http://dx.doi.org/10.1364/OL.36.003338
http://dx.doi.org/10.1063/1.2956673
http://dx.doi.org/10.1063/1.2956673
http://dx.doi.org/10.1103/PhysRevB.85.214123
http://dx.doi.org/10.1103/PhysRevLett.95.264302
http://dx.doi.org/10.1103/PhysRevLett.95.264302
http://dx.doi.org/10.1103/PhysRevE.75.046603
http://dx.doi.org/10.1088/1367-2630/11/9/093022

