
PHYSICAL REVIEW B 15 JANUARY 1998-IVOLUME 57, NUMBER 3
Photonic localization in one-dimensionalk-component Fibonacci structures
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We studied the photonic localization of one-dimensionalk-component Fibonacci structures~KCFS’s!, in
which k different intervals are ordered according to a substitution rule. By using a transfer-matrix method, the
optical transmission through KCFS’s is obtained. It is demonstrated that the transmission coefficient has a rich
structure, which depends on the wavelength of light and the number of different incommensurate intervalsk.
For the KCFS’s with an identicalk, by increasing the layer number of the sequences, more and more trans-
mission dips develop and some of them approach zero transmission, which may finally make a one-
dimensional photonic band gap. For a series of finite KCFS’s, by increasing the number of different incom-
mensurate intervalsk, the total transmission over the spectral region of interest decreases gradually and the
width of photonic band gap becomes larger. This property may be useful in the design of the high-performance
optical and electronic devices. As for the infinite KCFS’s, the transmission coefficient is singularly continuous
and multifractal analysis is employed to characterize the transmission spectra. A dimensional spectrum of
singularities associated with the transmission spectrumf (a) demonstrates that the light propagation in the
KCFS’s presents scaling properties and hence shows a genuine multifractality.@S0163-1829~98!10103-0#
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I. INTRODUCTION

Since Anderson discussed the localization of electron
disordered system in 1958,1 the question of localization ha
been one of the most actively studied subjects in conden
matter physics.2 Recently, some fascinating issues ha
added fresh insight into the localization problem. First,
localization of states was recognized as a remarkable
nomenon that stems from the wave nature of the electro
states instead of only an electronic problem. Such local
tion is a feature related to any waves when there exists
order in the structures, for example, it has also been repo
in acoustic waves3,4 and optical waves,5,6 respectively. Sec-
ond, the localized optical modes in certain dielectric mic
structures have attracted much attention both theoretic
and experimentally.7–13 Since Yablonovitch and his co
authors have studied the propagation of electromagn
waves in periodic dielectric media,7–9 various dielectric ma-
terials have been exploited and the interest particularly lie
the dielectric structures possessing the photonic band gap
complete ‘‘photonic band gap’’ in a dielectric microstructu
means the absence of photon propagation modes in an
rection for a range of frequencies. Therefore, the studie
photonic band structures may have potential application
optical and electronic devices. Third, the localization occ
not only in disordered system but also in the determinis
quasiperiodic system.14–17Furthermore, the exponentially lo
calized states can also appear in other deterministic aper
systems such as the incommensurate Aubry-Andre´ model18

and the deterministic aperiodic Rudin-Shapiro system.19 It is
well known that quasicrystals are perfectly ordered, but
Bloch theorem is inapplicable since there is no translatio
symmetry. On the other hand, the wave function is not
ponentially localized as what happened in the disordered
tem. In some sense, the quasiperiodic system represen
intermediate case between periodic and disordered ones
570163-1829/98/57~3!/1544~8!/$15.00
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In one-dimensional~1D! quasiperiodic system, one of th
well-known examples is the Fibonacci sequence. The
bonacci sequence can be produced by repeated applicati
the substitution ruleA→AB andB→A, in which the ratio of
the numbers of the two incommensurate intervalsA andB is
equal to the golden meant5(A511)/2. Since Merlinet al.
reported the realization of Fibonacci superlattices,20 much
attention has been paid to the exotic wave phenomena
Fibonacci systems in x-ray scattering spectra,20–22 Raman
scattering spectra,23,24 and propagation modes of acoust
waves on corrugated surfaces.25,26 However, the localization
effect was not immediately apparent in these cases. In 1
Kohmotoet al.27 suggested that a suitable system for stud
ing the photonic localization is classical electromagne
waves in a quasiperiodic layered medium. Later the opt
properties between Fibonacci and random multilayers w
compared numerically28 and optical transmission through b
nary multilayers arranged according to deterministic ap
odic distribution rules was investigated.29 Very recently the
experiments on the optical dielectric multilayers with F
bonacci structure were reported.30 However, to the best of
our knowledge, the localization problems of 1D aperiod
structures with more than two incommensurate interv
have not been studied so far, although their structural ch
acterization and other physical properties have been
formed previously.31–35

In this paper we report the photonic localization of 1
k-component Fibonacci structures~KCFS’s!, which contain
k incommensurate intervalsAi ( i 51,2, . . . ,k) and can be
generated by the substitute ruleA1→A1Ak , Ak→Ak21,
. . . , Ai→Ai 21, . . . , A2→A1. By using a transfer matrix
method, the optical transmissions through thek-component
Fibonacci multilayers are calculated, which illustrates a r
structure. For the KCFS’s with an identicalk, when the layer
number is large enough, one-dimensional photonic b
gaps will appear in the transmission spectrum. Furtherm
1544 © 1998 The American Physical Society
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57 1545PHOTONIC LOCALIZATION IN ONE-DIMENSIONAL k- . . .
as the number of different incommensurate intervalsk in-
creases, gradually wider photonic band gaps are exhibite
the spectra of the finite KCFS’s. For the infinite KCFS’s, t
transmission coefficient is singularly continuous and mu
fractal analysis is employed to characterize these trans
sion spectra. It is known that multifractal analysis is a su
able statistical description of the long-term dynamic
behavior of a physical system.36,37 The multifractal formal-
ism relies on the nonuniformity of the system. Our inves
gation demonstrates that the transmission spectra of
KCFS’s are highly nonuniform intensity distributions th
possess scaling properties of multifractal.

II. THEORETICAL MODEL AND NUMERICAL METHOD

Let us begin with the description of thek-component Fi-
bonacci structures. First, we define a basis that includek
distinct incommensurate intervalsA1, A2, . . . , Ak . These
intervals are arranged in ak-component Fibonacci sequenc
with a substitution ruleS denoted as

A1→A1Ak , Ak→Ak21 , . . . ,

Ai→Ai 21 , . . . , A2→A1 .

In contrast, the KCFS’s can be expressed by a limit of
generation of the sequenceCn

(k) . Let Cn
(k)5SnA1; thus

C0
~k!5A1 ,

C1
~k!5A1Ak ,

C2
~k!5A1AkAk21 ,

A

Ck21
~k! 5A1AkAk21•••A3A2

and in generalCn
(k)5Cn21

(k) 1Cn2k
(k) . If the interval number of

the generationCn
(k) is defined asFn

(k) , Fn
(k) is satisfied by

Fn
(k)5Fn21

(k) 1Fn2k
(k) , with Fi5 i 11 (i 50,1, . . . ,k21). We

denote the number ofAi ( i 51,2, . . . ,k) in Cn
(k) as

Nn
(k)(Ai). The ratios of these numbers are defined ash i

5 limn→`@Nn
(k)(Ai)/Nn

(k)(A1)#. It turns out that the set$h i%
satisfies

hk
k1hk51,

1:hk5hk :hk215•••5h i :h i 215•••5h3 :h2 . ~1!

Therefore, all these ratiosh i5hk
k2 i 11 (1, i<k) are irratio-

nal numbers between zero and unity excepth151. It has
been proved31 that the KCFS’s are quasiperiodic when
,k<5, while for k.5, the KCFS’s are nonquasiperiodi
but they are still ordering.

The system we study here is thek-component Fibonacc
~KCF! multilayers consisting ofk different kinds of layers
A1, A2, . . . , Ai , . . . , Ak with indices of refraction$ni%
and thicknesses$di%, respectively ~where i 51,2, . . . ,k).
Now we consider the optical propagation through the K
multilayers. In the case with normal incidence and polari
in

-
is-
-
l

-
he

e

-

tion parallel to the multilayer surfaces, the transmiss
through the interfaceAj←Ai is given by the transfer matrix

Tj ,i5S 1 0

0 ni /nj
D ~2!

and the light propagation within a layerAi is described by a
matrix Ti where

Ti5S cosd i 2sind i

sind i cosd i
D , ~3!

where the phased i is given byd i5gnidi , g is the vacuum
wave vector, anddi is the thickness of the layerAi . Then the
propagation of light through an aperiodically layered m
dium can be expressed by multiplying matrices of the diff
ent layers. For example, the transmission of light throug
multilayer ordering as$AiAjAm% can be obtained by the ma
trix M5TmTm, jTjTj ,iTi .

Considering the experimental setup, thek-component Fi-
bonacci multilayerCn

(k) is sandwiched between two media
materialA1, the corresponding transfer matrix is

Mn
~k!5Mn2k

~k! Mn21
~k! , ~4!

where

M0
~k!5T1

~k! , M1
~k!5Tk

~k!Tk,1
~k!T1

~k! ,

M2
~k!5Tk21

~k! Tk21,k
~k! Tk

~k!Tk,1
~k!T1

~k! , . . . ,

Mk21
~k! 5T2

~k!T2,3
~k!T3

~k!T3,4
~k!•••Tk21

~k! Tk21,k
~k! Tk

~k!Tk,1
~k!T1

~k! .

Therefore, the whole multilayer is represented by a prod
matrix Mn

(k) relating the incoming and reflected waves to t
transmitted wave. From this expression the transmission
efficient can be written as

T@Cn
~k!#5

4

uMn
~k!u212

, ~5!

where uMn
(k)u2 denotes the sum of the squares of the fo

elements ofMn
(k) .

III. NUMERICAL RESULTS AND DISCUSSION

Based on Eqs.~4! and ~5!, the optical transmission
through the KCFS’s can be calculated. The indices of
refraction corresponding to thek different layers$Ai% are
chosen asni53h i in this whole optical investigation of the
KCFS’s, whereh i can be given by Eq.~1!. In order to ex-
hibit more clearly the effect of the underlying geometric
structures, we consider the simplest setting. We suppose
the index of refraction is wavelength independent and
thicknesses of thek different layers$di% are chosen to give
nidi5nd, i.e., the optical phases corresponding to thek dif-
ferent layers are the same asd i5d ( i 51,2, . . . ,k).

We have studied a series of the transmission spectra o
KCFS’s by increasing the number of layers and by vary
the number of incommensurate intervalsk. As an example,
Fig. 1 gives the transmission coefficientT as a function of
the phased in the interval@p,2p# for the three-componen
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FIG. 1. Transmission coefficientT as a function of the phased for the three-component Fibonacci structures with the follow
generation and the number of layers:~a! C7

(3) andN513, ~b! C9
(3) andN528, ~c! C11

(3) andN560, and~d! C14
(3) andN5189, respectively.
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Fibonacci multilayers (k53) with the generationsC7
(3),

C9
(3) , C11

(3) , andC14
(3) , respectively, and the indices of refra

tion of the three different layers$Ai% ( i 51,2,3) aren153,
n251.397, andn352.047, respectively. It is evident that i
the case of a very small number of layers there is no t
reflection, although there exists some region of minim
transmission; when the number of layers becomes la
some regions may give rise to total reflection. Generally,
increasing the number of layers of the structures, more
more transmission zones diminish gradually and some
them approach zero transmission. In this way, a o
dimensional photonic band gap is realized. In order to hav
quantitative impression, we define an ‘‘average transm
sion’’ as

^T&ave5

1

pEp

2p

T~d!dd. ~6!

It follows that the average transmissions of Figs. 1~a!–1~d!
are ^T&ave>0.640, 0.519, 0.424, and 0.302, respective
Therefore, the total transmission over the spectral region
interest definitely decreases when the number of layers in
KCFS’s (k is fixed! increases due to the appearance of p
tonic band gaps.

It is also enlightening to compare the optical propagat
behaviors of the KCFS’s with different number of incom
mensurate intervalsk. The calculations are performed on th
transmission of different KCFS’s with almost identical num
bers of layers. Figure 2 illustrates the transmission coe
cient T as a function of the phased for four KCFS’s with
different k. It can be easily seen that with increasingk, the
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photonic band gaps can be easily observed. Meanwhile
average transmission defined above varies as^T&ave>0.499,
0.268, 0.151, and 0.127, corresponding to Figs. 2~a!, 2~b!,
2~c!, and 2~d!, respectively. Hence the total transmissi
over the spectral region decreases gradually. Conseque
wider photonic band gaps appear whenk increases in the
KCFS’s. Moreover, when the number of layers in t
KCFS’s is sufficiently large, the width of the photonic ban
gap in the corresponding transmission spectra increases
nificantly whenk increases. This tendency is demonstra
clearly in Figs. 3~a!–3~d!, where the number of layers i
aboutN530 000. It is well known that the existence of th
photonic band gap is of great interest for potential tech
logical applications. The overlap of the photonic gap a
electronic band edge suppresses the spontaneous emiss
light and favors the population reverse, which can impro
the performances of many optical and electronic devices7–9

Obviously, the large photonic band gap of the dielect
structures may make it easier to satisfy the technical requ
ments. From this point of view, the KCFS’s might be a kin
of structural design for the high-performance optical a
electronic devices.

In addition, it is interesting to investigate the optical fe
tures of the KCFS’s withk.5, which actually belong to
nonquasiperiodic structures. As an example, Figs. 4~a!–4~d!
demonstrate the transmission coefficientT as a function of
the phased for the KCFS’s withk56 and 10, respectively
The average transmission varied as^T&ave>0.1034, 0.0278,
respectively, in Figs. 4~a! and 4~b! corresponding tok56,
and ^T&ave>0,0556, 0.0126, respectively, in Figs. 4~c! and
4~d!, corresponding tok510. One may find that the electro
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FIG. 2. Transmission coefficientT as a function of the phased for the k-component Fibonacci structures with the different incomm
surate intervalsk. The value ofk, the generation, and the number of layersN are as follows:~a! k52, C12

(2) , andN5233; ~b! k53, C15
(3) ,

andN5277; ~c! k54, C17
(4) , andN5250; and~d! k55, C19

(5) , andN5245, respectively.
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magnetic waves are also localized in these nonquasiperi
structures and the photonic band gaps in these transmis
spectra develop when the number of layers is increa
These features resemble the results from the Rudin-Sha
system.19 Moreover, with increasingk, the width of photonic
band gaps enlarges and the optical behaviors in the KCF
with k.5 are much closer to those of random distributio
in some senses. Further studies on this aspect are bein
dertaken.

IV. SCALING PROPERTIES IN THE TRANSMISSION
SPECTRA OF THE KCFS’s

In the previous discussion we applied the average tra
mission to describe the whole transmission spectra of
KCFS’s. This analysis, however, is limited especially in t
case when the number of layers in the KCFS’s is la
enough. Actually, the transmission spectra shown in F
3~a!–3~d! should be neither discrete nor continuous. The
complicated spectra can be characterized by statistical m
ods such as multifractal analysis. Multifractal analysis is
tool for characterizing the nature of a positive measure i
statistical sense.38–41 If a positive measure is covered wit
boxes of size« and pi(«) is denoted as the probability~in-
tegrated measure! in the i th box, an exponent~singularity
strength! a i can be defined as

pi~«!;«a i. ~7!
ic
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If we count the number of boxesN(a)da where the prob-
ability pi has singularity strength betweena and a1da,
then f (a) can be loosely defined as the fractal dimension
the set of boxes with singularity strengtha, that is,

N~a!da;«2 f ~a!da. ~8!

The f (a) singularity spectrum provides a mathematica
precise and intuitive description of the nonuniform system
On the other hand, it should be mentioned that the gene
ized dimensionDq provides an alternative description of th
singular measure. It is defined as

Dq5
1

q21
lim
«→0

ln( i@pi~«!#q

ln«
. ~9!

Dq corresponds to scaling exponents for theqth moments of
the measure.

In the case of the transmission spectrum, the optical tra
mission coefficient is a positive quantity and the phase sp
is a support. A straightforward application of the multifract
formalism requires the evaluation of the exact integral of
intensity measure of the structures with infinite length ove
small segment of length in the phase space. In this case
computer time for calculation will increase incredibly. T
solve this problem, an approximate scheme is chosen.41 In-
stead of calculating the infinite KCFS’s, we only deal with
structure that contains repeating copies of finite generat
i.e., Cn

(k) of the original structure. It is known that the tran
mission of a periodic multilayer is also periodic and the p
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FIG. 3. Transmission coefficientT as a function of the phased for the k-component Fibonacci structures with the different incomm
surate intervalsk. The value ofk, the generation, and the number of layersN are as follows:~a! k52, C22

(2) , andN528657;~b! k53, C27
(3) ,

andN527201;~c! k54, C32
(4) , andN531422; and~d! k55, C36

(5) , andN529244, respectively.
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riodicity is p. Therefore, we need only consider the situati
in one period of phase space. The essential ingredien
multifractal characterization is the probability weightspi . In
our case,pi is denoted as the weight of the transmissi
coefficient in the transmission spectrum, i.e.,

pi5
uTi u2

(
i 51

N

uTi u2
, ~10!

whereTi is the transmission coefficient@shown in Eq.~5!#
with the phased i5p( i /N) ( i 51,2, . . . ,N) and the number
of layers N5Fn

(k) . The partition function can then be ex
pressed as

Z~q!5(
i 51

N

pi
q ,

Z8~q!5
dZ

dq
5(

i 51

N

pi
qlnpi , ~11!

Z9~q!5
d2Z

d2q
5(

i 51

N

pi
q~ lnpi !

2,

where the parameterq provides a ‘‘microscope’’ for explor-
ing the singular measure in different regions. Forq.1, Z(q)
amplifies the more singular regions ofpi , while for q,1 it
accentuates the less singular regions. Forq51 the measure
Z(1) replicates the original measure. Thef (a) curve of any
in
finite sample is therefore available at a local level, i.e., fo
given phase space. The values ofa and f (a) are given by

a52
Z8~q!

Z~q!lnN
,

~12!

f ~a!5
1

lnNS lnZ~q!2
qZ8~q!

Z~q! D .

The generalized dimensionsDq are related to the spectrum
of singularity f (a) by the Legendre transform

f ~a!5aq2~q21!Dq ,
~13!

a~q!5
d

dq
~q21!Dq .

In order to illustrate the multifractality of the transmissio
spectra of the KCFS’s shown in Figs. 3~a!–3~d!, we calculate
the correspondingf (a) spectra shown in Fig. 5~a! according
to Eqs. ~11!–~13!. In Fig. 5~a! the data points fit perfectly
into a smooth curve, which is a characteristic of an infin
structure. The quantityf (a) is commonly the dimension o
the set of phasesd in the transmission spectrum. In particu
lar, there are several physical meanings in thef (a) spectrum
of a transmission measure.~i! The abscissaa0 of the summit
of the f (a) curve, which corresponds toq50, is the strength
of a generic singularity. In some senses, the exponenta0
characterizes the behavior of the transmission at a gen
singularity. Obviouslyf (a0),1, which means that the sup
port of the transmission is not the wholed axis due to the
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FIG. 4. Transmission coefficientT as a function of the phased for thek-component Fibonacci structures withk.5. The value ofk, the
generation, and the number of layersN are as follows:~a! k56, C21

(6) , andN5251; ~b! k56, C33
(6) , andN55103; ~c! k510, C28

(10) , and
N5265; and~d! k510, C44

(10) , andN54746.
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existence of the optical band gaps in the spectra. Moreo
because the width of the optical band gap increases whk
propagates, the fractal dimension of the supportf (a0) de-
creases correspondingly.~ii ! The extremesamin andamax of
the abscissa of thef (a) curve represent the minimum an
the maximum of the singularity exponenta, which acts as an
appropriate weight in phase space. In fact,amin
5 limq→1`Dq andamax5 limq→2`Dq characterize the scal
ing properties of the most concentrated and most rare
region of the intensity measure, respectively. By increas
the number of incommensurate intervalsk in the KCFS’s,
the value ofDa5amax2amin also gradually increases. Th
implies that the optical transmission measure of the KCF
approaches the behavior of a random system whenk in-
creases.~iii ! The dimension of the set of transmission pea
dp5 f (1), corresponding toa51. dp represents the dimen
sion of the set of phased for which the local singularity
exponenta is less than unity. In Fig. 5~a! we havedp,1;
whenk increases,dp decreases evidently. Therefore, diffe
ent KCFS’s exhibit different transmission distributions.

The generalized dimensionDq characterizes the nonun
formity of the measure, positiveq’s accentuate the dense
regions, and negativeq’s accentuate the rarer ones. Figu
5~b! shows the plot of generalized dimensionDq vs q for the
transmission spectra of the KCFS’s shown in Fig. 3. T
plots ofDq vs q in Fig. 5~b! correspond to the plots off (a)
vs a in Fig. 5~a!. For some special values ofq, one can take
Dq as the dimension of a special set, which supports a
ticular part of the measure.~i! D0 for q50, i.e., D0
5 lim«→0@ lnN(«)/ln(1/«)#, whereN(«) is the number of line
r,

d
g

’s

s

e

r-

segments of size« to cover the whole phase axis, is th
dimension of the support as mentioned above,D05 f (a0)
,1. ~ii ! D1 for q→1 is the information dimension of the
intensity measure,

D15 lim
«→0

2( i pi~«!lnpi~«!

ln~1/«!
,

where 2pi(«)ln@pi(«)# is an expression from information
theory and corresponds to the amount of information ass
ated with the distribution ofpi(«) values. For q51,
f „a(1)…5a(1)5D1. The distance ofD1 to unity is a faith-
ful measure of how singular the transmission measure
Figure 5~b! shows that the information dimensionD1 in the
KCFS’s is less than the dimension of the supportD0, i.e.,
D1,D0,1. So the transmission distribution of the KCFS
with 2<k<5 is definitely a fractal measure.~iii ! D2 for q
52 is the correlation dimension,

D25 lim
«→0

ln( i pi
2~«!

ln«
5 lim

«→0

ln^m~«!&
ln«

,

where ^m(«)& is the average density of the transmissi
peaks in the phase interval of«5Dd in the transmission
measure of the KCFS. We haveD2(k),D2(k8) in the
KCFS’s if k.k8 ~for example,D2'0.77 for k53 andD2
'0.69 for k55). It has been demonstrated that whenk be-
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comes larger, there are fewer transmission peaks occurrin
the transmission spectrum of the KCFS’s and the opt
band gaps are definitely enlarged.

The above scaling analysis indicates that the transmis
spectra of the KCFS’s (2<k<5) are singular continuou

FIG. 5. ~a! f (a) spectra and~b! plot of the generalized dimen
sion Dq as a function ofq, for the transmission distributions of th
KCFS’s wherek52,3,4,5, respectively.
od
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and possess multifractality. Whenk increases, the photoni
localization of the electromagnetic wave is exhibited a
wider optical band gaps are found.

V. CONCLUSION

In this paper we have presented the transmission of e
tromagnetic wave through thek-component Fibonacci struc
ture, which containsk different incommensurate interval
and can be generated by a substitution rule. The transmis
spectra of thek-component Fibonacci multilayers have be
obtained by a transfer matrix method. It has been dem
strated that the transmission coefficient has a rich struct
For the KCFS’s with a fixedk, the photonic localization is
expected and the one-dimensional band gap appears w
the layer of the sequence becomes sufficiently large; on
other hand, for the finite KCFS’s with gradually increasingk,
the width of the photonic band gap becomes larger. Th
interesting properties make the KCFS’s a possible candid
of the designed material for the high-performance opti
and electronic devices. When the number of layers
proaches infinity, the transmission coefficient is expected
demonstrate a multifractal behavior. Multifractal analysis
veals that these transmission measures can be characte
by a monotonically decreasing dependence ofDq vs q; the
dimension spectrum of singularitiesf (a) is a smooth func-
tion with a summit ofD0,1. The transmission measure do
not have an absolutely continuous component. Therefore
optical propagations through the KCFS’s (2<k<5) are sin-
gular continuous and possess multifractal properties. Fina
an experimental investigation of the transmission through
media of the KCFS’s is expected in further study.
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