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Based on rigorous dynamical-theory calculations, we demonstrate the principle of an x-ray multiple-

beam diffraction (MBD) scheme that overcomes the long-lasting difficulties of high-resolution in-

plane diffraction from crystal surfaces. This scheme only utilizes symmetric reflection geometry with

large incident angles but activates the out-of-plane and in-plane diffraction processes simultaneously

and separately in the continuous MBD planes. The in-plane diffraction is realized by detoured MBD,

where the intermediate diffracted waves propagate parallel to the surface, which corresponds to an

absolute Bragg surface diffraction configuration that is extremely sensitive to surface structures. A se-

ries of MBD diffraction and imaging techniques may be developed from this principle to study sur-

face/interface (misfit) strains, lateral nanostructures, and phase transitions of a wide range of

(pseudo)cubic crystal structures, including ultrathin epitaxial films and multilayers, quantum dots,

strain-engineered semiconductor or (multi)ferroic materials, etc. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4901046]

X-ray diffraction is one of the most widely used techni-

ques for characterization of crystalline materials with unri-

valled angular resolution and strain sensitivity. However,

since the interaction of x-rays with materials is a weak scatter-

ing process, x-ray diffraction usually requires a large crystal

volume to collectively produce strong and sharp diffraction

signals, which makes it difficult to use this technique to study

ultrathin films and nanostructures. The other limitation is that

the Bragg reflection geometry has very limited sensitivity to

in-plane structures or strains (parallel to the surface). For

example, the most commonly used symmetric reflection ge-

ometry can only detect the out-of-plane structures (along the

surface normal direction), while the in-plane information,

which is usually more critical for understanding misfit strains

and relaxation, lateral nanostructure patterns, critical phenom-

ena of surfaces and interfaces, etc, is lost.1

To overcome these limitations, researchers have made tre-

mendous efforts to develop extremely asymmetric diffraction

schemes, particularly grazing-incidence diffraction, to increase

the in-plane sensitivity and reduce the x-ray penetration

depth (so as to enhance surface or interface diffraction).1–5

In addition to its experimental complexities, however,

grazing-incidence diffraction unfortunately suffers from

many severe difficulties, including (i) low diffraction effi-

ciency (due to x-ray total external reflection), (ii) low angu-

lar resolution (associated with the broad diffuse grazing

diffraction peaks), and (iii) extremely low spatial resolving

resolution for surface mapping and imaging due to the large

footprint of the grazing-incident beam on the sample. These

drawbacks have significantly hindered the applications of

high-resolution x-ray diffraction although more powerful

x-ray sources, particularly modern synchrotrons with two-

dimensional beam collimation,6 are available or emerging.

Here, we present a simple scheme to solve the long-lasting

difficulties of in-plane diffraction. It only utilizes the symmetric

reflection geometry with large incident angles but can produce

two individual diffraction peaks through the x-ray multiple-

beam diffraction (MBD) effect. These two peaks correspond

exactly to the out-of-plane and in-plane diffraction processes,

respectively, such that the two kinds of structural information

can be revealed simultaneously but independently. Although it

involves no grazing incidence, the intermediate diffracted

waves in the MBD process propagate almost exactly parallel to

the surface. Therefore, this scheme is extremely sensitive to

surface structures, and thus can be used to study and image a

wide range of epitaxial (as well as bulk) materials, including

ultrathin films and multilayers, quantum dots, nanowires,

strain-engineered (multi)ferroic or electronic materials,7–10 etc.

Si and GaAs in the (001) orientation provide the foundation

for semiconductor microelectronics, so we focus on the simple

symmetric 004 reflection from the (001) surface of a cubic crys-

tal structure in Fig. 1(a). We will demonstrate that this routine

configuration has a series of surprising diffraction properties.

For cubic crystal structures, a back reflection g1 ¼ HKL
with Bragg angle hB close to 90� is usually accompanied

by parasitic reflections gm ¼ hkl that fulfill the condition

h2 þ k2 þ l2 ¼ Hhþ Kk þ Ll, and the parasitic reflections

always form “conjugate pairs” (gm, gm0 ¼ g1 � gm).11–13 For

g1 ¼ 004, this principle gives two parasitic reflection pairs

(202, 202) and (022, 022), with the corresponding reciprocal

lattice points G2, G3, G4, and G5 all located on the equator of

the 004 back-reflection Ewald sphere in Fig. 1(b), i.e., exact

004 back reflection is a six-beam diffraction configuration.

Interestingly, the MBD can extend to a full continuous angu-

lar range of 0� < h � 90� along specific directions. In
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Fig. 1(b), let us deviate the incident wavevector K0 from

CO(corresponding to the back-reflection condition) to AO,

where A is an arbitrary point on line G2G3 that is perpendicu-

lar to the circle OG4G1G5 and passes through the circle cen-

ter C. Obviously, A is always equidistance from O, G4, G1,

and G5, i.e., these points are also all located on a new Ewald

sphere OG1B centered at A, which corresponds to a four-

beam diffraction configuration involving 004, 022, and 022

reflections. Hence, if the plane of primary diffraction (PPD)

determined by K0 and g1 is the (010) lattice plane in

Fig. 1(a), 004 reflection with Bragg wavelength k ¼ jAOj�1

¼ 2d sin h is always a four-beam diffraction process for any

incidence angle, where h is the incident angle and d is the

spacing of the (004) Bragg planes. We call the (010) plane a

continuous MBD plane. By symmetry, (100) is the other con-

tinuous MBD plane for 004, 202, and 202 reflections.14

To verify this phenomenon, we have used the Fourier
coupled-wave diffraction theory (FCWDT), which is a rigor-

ous first-principles method,15 to calculate the Si 004 four-

beam Darwin curves for various incidence angles. Figure 2

shows four typical Darwin curves under the condition that

the PPD is (010), where each four-beam diffraction peak

splits into two subpeaks. Note that in Fig. 2(d), strong dif-

fraction still occurs although the Bragg angle hB ¼ 45�

makes the primary 000! 004 reflection forbidden for

p-polarization. As will be discussed below, the high 004

reflectivity here results from detoured diffraction. Above all,

our calculations prove that strong MBD indeed occurs for all

the Bragg angles of 004 reflection within the continuous

MBD planes (010) and (100).

Under the 000=004=022=022 four-beam diffraction condi-

tion, there exist three diffraction channels in Fig. 1(b) that con-

tribute to the overall 004 reflection. The first one is the direct

000! 004 channel, corresponding to the diffraction path

AO þ OG1 ¼ AG1 or K0 þ g1 ¼ K1, where K1 ¼ AG1 is the

wavevector of the overall 004 reflection wave [see Fig. 1(a)].

The other channels are two detoured channels 000! 022!
022 and 000! 022! 022, which correspond to the diffrac-

tion paths AO þ OG4 þ G4G1 ¼ AG1 ðK0 þ g4 þ g5 ¼ K1Þ
and AO þ OG5 þ G5G1 ¼ AG1 ðK0 þ g5 þ g4 ¼ K1Þ,
respectively, in Fig. 1(b). Here, note that g4 þ g5 ¼ g1,

g4 ¼ OG4 ¼ G5G1 , and g5 ¼ OG5 ¼ G4G1 .

In the two detoured channels, the intermediate diffracted

wavevectors are K4 ¼ AG4 and K5 ¼ AG5 , respectively,

which are parallel to the (001) crystal surface for symmetric

004 reflection. Therefore, 000! 022 and 000! 022 are the

so-called Bragg surface diffraction13,16 with the diffracted

waves propagating parallel to the surface. A unique property

of Bragg surface diffraction is its ultrahigh surface sensitiv-

ity (corresponding to extremely small x-ray penetration).

Here, for Si 004 four-beam diffraction, this property is demon-

strated by the two Darwin curves of thin crystals in Fig. 3(a),

where the reflectivity maxima for crystal thicknesses t ¼ 100

and 50 nm are surprisingly high, Rmax
004 ¼ 0:33 and 0.032,

respectively. In comparison, the corresponding reflectivity

maxima of two-beam 004 reflection at the same Bragg angle

hB ¼ 20� are only 7:6� 10�4 [Fig. 4(b)] and 1:9� 10�4 (not

shown), respectively. In addition, the two-beam diffraction

peak for t ¼ 50 nm is quite diffuse (about 0.9 mrad wide) with

satellite fringes, compared with the sharp peak in Fig. 3(a)

that is only 1.6 lrad wide.

In Fig. 1(b), the Bragg conditions for 004, 022, and 022

are geometrically satisfied simultaneously when A is located

on the line G2G3. But in reality, the Bragg peak of each

reflection is always slightly shifted from the geometrical

Bragg angle due to the small x-ray refraction. Here by sym-

metry, the refraction corrections of 022 and 022 are the

same, but they are slightly different from that of 004. This

difference causes the split of the four-beam 004 Bragg peak

into two peaks in Figs. 2 and 3(a) for t ¼ 1. The left peak

FIG. 1. (a) Symmetric 004 reflection geometry in real space for cubic struc-

tures. The plane of incidence is parallel to (010). Er and Ep indicate the r-

and p-polarization states of the electric fields. (b) MBD associated with 004

back reflection and its extension in reciprocal space. O ¼ 000 is the origin of

reciprocal space, and C ¼ 002 is the back-reflection Ewald sphere center. The

six diffraction vectors are g0 ¼ 000 (forward transmission), g1 ¼ OG1 ¼ 004

(primary reflection), g2 ¼ OG2 ¼ 202, g3 ¼ OG3 ¼ 202, g4 ¼ OG4 ¼ 022,

and g5 ¼ OG5 ¼ 022.

FIG. 2. Four-beam diffraction Darwin curves (in comparison with the regu-

lar two-beam Darwin curves) for different Bragg angles hB of symmetric Si

004 reflection within the (010) plane. t¼1 and U¼ 0.

181903-2 Huang et al. Appl. Phys. Lett. 105, 181903 (2014)
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corresponds to the direct 000! 004 channel, while the right

peak corresponds to the two detoured channels.

To prove this principle, we artificially induce a small ho-

mogeneous in-plane strain Ddjj=d ¼ �0:002 to the semi-

infinite crystal (while the out-of-plane lattice constant is

unchanged). Compared with the unstrained crystal, this strain

leads to two major changes in the overall 004 diffraction pat-

tern in Fig. 3(b): (i) The right peak shifts significantly to

Dhjj ¼ 85:3 lrad and (ii) the left peak has a much smaller

shift but with both its position and shape approaching those

of the two-beam 004 Bragg peak in Fig. 3(a). When the

strain is increased to Ddjj=d ¼ �0:004, the left peak almost

stops varying but the right peak shifts further to

Dhjj ¼ 158 lrad. For further increase of Ddjj=d, our FCWDT

calculations show that the left peak becomes exactly the

two-beam Darwin peak with the peak center fixed at

Dh?0 ¼ 8:1 lrad. In comparison, the right peak keeps shifting

and its peak center Dhjj rigorously follows the equation:

Ddjj=d ¼ �ðDhjj � Dh
jj
0ÞcothB; (1)

where Dh
jj
0 ¼ 12:3 lrad and hB (¼20� here) is the 004

reflection Bragg angle. Obviously, Eq. (1) is the differential

form of the in-plane Bragg equation 2djj sin h ¼ k, where

djjð¼ d þ DdjjÞ is the spacing of the lateral (040) Bragg

planes. Thus, it becomes clear that the right peak (here called

the in-plane peak) indeed corresponds to an in-plane diffrac-

tion process that is the net effect of the two detoured diffrac-

tion channels 000! 022! 022 and 000! 022! 022.

However, it should be noted that here h is measured along

the out-of-plane diffraction direction [see Fig. 1(a)], i.e., the

in-plane diffraction is revealed along the 004 out-of-plane

diffraction direction.

For comparison, now we induce an out-of-plane strain

Dd?=d ¼ 0:004 to the crystal (with Ddjj ¼ 0Þ, which remark-

ably shifts the left peak from Dh?0 ¼ 8:1 lrad to Dh?
¼ �137:5 lrad in Fig. 3(c). In contrast, without the interac-

tion of the left peak and the influence of in-plane strains, the

in-plane peak is (always) located at Dh
jj
0 ¼ 12:3 lrad, which

is consistent with Eq. (1). Thus, Dh
jj
0 is the refraction correc-

tion to the in-plane diffraction. Obviously, the shift of

the left peak (called the out-of-plane peak) satisfies the dif-

ferential Bragg equation of the out-of-plane two-beam 004

reflection

Dd?=d ¼ �ðDh? � Dh?0 Þcot hB; (2)

where Dh?0 ¼ 8:1 lrad is the corresponding refraction correc-

tion. Therefore, we have proved that the two peaks in the

four-beam 004 reflection are indeed independently caused by

the out-of-plane and in-plane diffraction processes, respec-

tively. The independence of the two peaks for strained crystals

can be further proved by the diffraction pattern in Fig. 3(c)

calculated with an out-of-plane strain Dd?=d ¼ 0:002 and an

in-plane strain Ddjj=d ¼ �0:002 applied simultaneously,

FIG. 3. (a) Si 004 diffraction Darwin curves calculated for different crystal

thicknesses t. The sharp peaks for t¼ 100 and 50 nm are, in fact, the in-

plane peaks. (b) Variation of 004 four-beam diffraction Darwin curves with

in-plane strains. (c) Variation of the out-of-plane peak with out-of-plane

strains. All the curves in (b) and (c) are based on t¼1. U¼ 0. FIG. 4. U-dependent h-scan diffraction patterns of Si 004 reflection,

Ddjj=d ¼ �0:01, and r-polarization. (a) Diffraction from a semi-infinite

crystal. (b) Diffraction from a thin crystal. (c) h� U mapping of the diffrac-

tion peaks in (a) and (b). Note that the out-of-plane peak and the diffraction

fringes (for t¼ 100 nm) are invariant with U within a small U-range. Such

features form the common “background” of all the related curves in (a) or

(b). See Fig. 1(b) for the diffraction conditions of A, A0, and A00 in reciprocal

space.
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where the two peaks shift simultaneously but independently

according to Eqs. (1) and (2), respectively.

Understanding of Eq. (1) requires detailed analyses of

Fig. 1(b). When the crystal has an in-plane strain Ddjj=d, the

reciprocal lattice points G4 and G5 move away from the

Ewald sphere OG1B to G4
0 ð0; ½2ðd þ DdjjÞ��1; ð2dÞ�1Þ and

G5
0 ð0;�½2ðd þ DdjjÞ��1; ð2dÞ�1Þ, respectively. (If the in-

plane strain is isotropic, G2 and G3 will also shift.)

Consequently, the incident wavevector K0 ¼ AO only satis-

fies the Bragg condition of the direct 004 reflection

(g1 ¼ OG1), which gives rise to the out-of-plane peak in Fig.

3(b). To satisfy the Bragg conditions of 022 and 022, K0 must

be rotated by dh in the OG2G1G3 plane [i.e., A moves to A0

ð� cosðhþ dhÞ=k; 0; sinðhþ dhÞ=kÞ] such that the condition

jA0G04j ¼ jA0G05j ¼ k�1 is fulfilled. Based on k ¼ 2d sin h, one

can prove that jA0G04j ¼ jA0G05j ¼ k�1 indeed leads to

Ddjj=d ¼ �dh cot h, which is consistent with Eq. (1) except

that the small refraction correction is not taken into account

here. Note that under this condition, the Bragg condition of

004 reflection is not satisfied (jA0G1j 6¼ k�1). Consequently,

the Bragg peak corresponding to K0 ¼ A0O is the pure in-

plane diffraction peak.

In Fig. 3(b), the reflectivity of the in-plane peak drops

quickly with increasing Ddjj=d, which is caused by the increas-

ing deviation of the in-plane diffraction from the MBD condi-

tion. A simple way to solve this problem is to rotate the

incident wavevector K0 in Fig. 1(b) by a small azimuthal angle

U but with the tail of K0 remaining on the G2G3G4G5 plane.

Apparently, there exists a point A00 on plane G2G3G4G5 that sat-

isfies jA00Oj ¼ jA00G1j ¼ jA00G05j ¼ jK0j ¼ 1=k. Under this

condition, both the Bragg conditions of 004 reflection and the

detoured 000! 022! 022 (AO þ OG5 þ G5G1 ¼ AG1)

channel are satisfied such that both diffraction processes are

strongly activated. It can be proved that the azimuthal angle of

A00 is simply U0 ¼ dh � ðDdjj=dÞ tan hB (with the small refrac-

tion correction ignored). [There exists a symmetric point A000

(U0 ¼ �dh) on plane G2G3G4G5 that satisfies the Bragg condi-

tions of 004 reflection and the other detoured channel

000! 022! 022, see Fig. 4(c).] Thus, if one performs

h-scans with U close to U0, the in-plane peak can be signifi-

cantly enhanced even for highly strained crystals. This can be

clearly seen from the FCWDT calculations in Fig. 4(a), where

the in-plane peak reflectivity in the h-scan diffraction patterns

steadily increases when U increases towards U0 ¼ 3:63 mrad.

For example, the in-plane reflectivity maxima reach 0.25 and

0.57 for U0 ¼ 3:55 and 3.75 mrad, respectively.

Figure 4(b) shows the corresponding h-scan reflectivity

curves for a thin Si crystal (t ¼ 100 nm). As expected, the

common out-of-plane peak in Fig. 4(a) becomes an extended

diffuse peak surrounded by thickness fringes. In contrast, the

in-plane peaks remain extremely sharp. Overall, the variation

of the in-plane peak reflectivity with U follows the same

trend as that in Fig. 4(a) and the peak positions remain nearly

unchanged.17

Figure 4(c) is the h� U map showing the positions of

the diffraction peaks in Figs. 4(a) and 4(b). Here, the slopes

of the two “in-plane-peak lines” are exactly 61, which

proves U0 ¼ dh. The dependence of the h-scan curves on U
indicates that in experiments, two-dimensional h� U map-

ping is required to precisely determine the U ¼ 0 reference

line in Fig. 4(c). Afterwards, one may make a full h-scan at

U ¼ 0 to find the in-plane peak position dh at A0 so as to

obtain Ddjj=d from Eq. (1). For highly strained crystals, the

in-plane peak at A0 ðdh;U ¼ 0Þ may be too weak to measure,

but one may extrapolate the two in-plane-peak lines in Fig.

4(c), which always have strong diffraction intensities near

A00 and A000 to A0. For a single pseudo-cubic crystal, Ddjj=d
represents the difference between the in-plane and out-of-

plane lattice constants, from which one can derive the strains

or deformations (self reference). For an epitaxial film on a

substrate, the h-U scan can simultaneously reveal the diffrac-

tion patterns of the substrate and epilayer, where the differ-

ence between the two in-plane Bragg angles precisely

determines the in-plane misfit strains.18

In the above, we have assumed that the lateral dimen-

sions of the crystals are homogeneously infinite, which

makes the in-plane diffraction peaks extremely sharp even

for ultrathin crystals. If the crystal has lateral modulations or

patterns (such as quantum dots and wires), the in-plane peak

will also show diffraction fringes or other patterns, similar to

the out-of-plane diffraction patterns of layered structures.

Therefore, this scheme is also capable of revealing lateral

nanostructures on crystal substrates.

In summary, we have demonstrated the principles of a

simple MBD scheme that can revolutionarily achieve pure

high-resolution in-plane surface diffraction. It can be real-

ized using both synchrotron and laboratory x-ray sources at

any wavelengths. The only extra requirements are the high-

precision U-rotation and a highly collimated incident beam

along both the h and U directions (typically <20 lrad).19

This scheme can be used for precise measurements of the

strain states (including Poisson’s ratios) of cubic-structure

crystals without the need of references. It is also powerful

for studying phase transitions between cubic and pseudocu-

bic structures of a variety of (multi)ferroic materials.7–10 For

epitaxial systems, the h-U scan can determine the absolute

in-plane misfit strains and lateral nanostructures. Since it

does not involve grazing incidence, the current scheme can

also achieve high spatial resolution, based on which one may

perform MBD x-ray topography20 or micron-beam mapping

to image the in-plane structures and defects (e.g., misfit dis-

locations or domains). Finally, since the continuous MBD

mechanism can be activated at any wavelengths, it is also

possible to combine this technique with resonant X-ray

scattering.21,22
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