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We present the studies of the interface optical phonorlsdamponent FibonacdKCF) dielectric multi-
lyaers, in whichk different incommensurate intervals are arranged according to a substitution rule. In the
dielectric continuum approximation, the dispersion relations and the frequency spectra are obtained by the
transfer-matrix method. Free-boundary and periodic-boundary conditions are taken into account. With the
free-boundary condition, the dispersion relations of the interface optical phonons in the KCF multilayers are
demonstrated to possess two bands of dual structures. For the KCF multilayerskith5l, each subband is
a self-similar structure and contaiks- 1 filial generations; for the KCF multilayers witti>5, the sub-bands
do not show self-similarity, but they still have the hierarchical charactefistierek is the number of different
incommensurate intervalsin the case of the periodic-boundary condition, the frequency span of interface
optical phonons in the KCF multilayers is singularly continuous and the frequency spectra are analyzed by a
multifractal concept. A dimensional spectrum of singularities associated with the frequency spé¢teim,
demonstrates that in the KCF multilayers the interface optical phonons distribution presents a genuine multi-
fractality. It is also shown that by increasing the number of different incommensurate intervals in KCF
multilayers, the fractal dimension of the corresponding support decrd&363-18209)06205-7

[. INTRODUCTION incommensurate intervals, although their structural charac-
terization and other physical properties have been investi-
Recently much attention has been paid to elementary exgated previously**3
citations in artificial multilayers. The interest has been fo- In this paper, we investigate the interface optical phonons
cused particularly on magnohglasmong and phonond.n  in k-component FibonacciKCF) dielectric multilayers,
phonon studies, the optical phonon in alkali halide or polawhich contain k incommensurate intervals A; (i
semiconductor multilayers is rather attractfvét is well ~=1,2,...Kk) and can be generated by the substitute rule
known that there are two kinds of optical modes: bulklike A;—AjA, Av—=A—1, ..o A=A, ..., Ap—AgL In
excitation and interface phonons. In the multilayer systemsthe dielectric continuum approximation, the dispersion rela-
the excitations in individual layers are coupled each other byion and frequency spectra are achieved by a transfer-matrix
the tail of evanescent fiefiHence the interface phonons are method. We discuss the interface optical phonons in the KCF
coupled to induce the collective excitation of the wholedielectric multilayers with free-boundary condition and
multilayer system when the layer thickness is relatively thin.periodic-boundary condition, respectively. It is shown that
Since the coupling of different layers depends critically uporwith free boundary condition, the dispersion relations of in-
the structure of multilayers, it is interesting to investigate theterface optical phonons possess two dual bands. For the KCF
interface optical phonons in the dielectric multilayers with multilayers with <<k<5, which are quasiperiodic, each sub-
various configurations, such as periodic, quasiperiodic antiand is a self-similar structure witk+ 1 filial generations;
even other aperiodic structures. while for the KCF multilayers wittk>>5, which are nonqua-
The Fibonacci sequence is one of the well-known ex-siperiodic, the sub-bands only show the hierarchical charac-
amples in one-dimensiongllD) quasiperiodic structures. teristic. On the other hand, with periodic boundary condition,
The Fibonacci sequence can be produced by repeated appiite frequency distribution for the KCF dielectric multilayer
cation of the substitution rulda—AB andB—A, in which  is singularly continuous and multifractal analysis is em-
the ratio of the numbers of the two incommensurate intervalployed to characterize these frequency spectra. It is known
AandB is equal to the golden mearr (1/5+1)/2. Since the that multifractal analysis is a suitable statistical description
first realization of Fibonacci superlattices reported by Merlinfor the study of long term dynamical behavior of a physical
etal.’ a lot of works on physical properties of 1D quasi- Systen:**> Our investigation demonstrates that the fre-
periodic structures have been carried out both experimentaliuency distribution of interface optical phonons in the KCF
and theoretically.For example, the exotic wave phenomenamultilayers present scaling properties of multifractal indeed.
of Fibonacci systems in x-ray scattering spe€tf@aman
scattering spectra,and in propagation mode_s of a_lcoustic Il THE THEORETICAL MODEL
waves on corrugated surfatBshave been investigated.
However, only a few studies of optical interface modes in To begin with, we give a description of thecomponent
Fibonacci dielectric superlattices have been repdtié@nd  Fibonacci structure$KCFS). We define a basis which in-
to our knowledge, there seems no work on the interface opeludesk distinct incommensurate intervafs; ,A,, ... A.
tical phonons in 1D aperiodic structures with more than twoThese intervals are arranged ifk-@omponent Fibonacci se-
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guence with a substitution rule denoted as
[ Al—AA,)
Av—Ax-1,
Ai—Ai_1,
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h| 1 :T|+l,| h| . (4)
+
The transfer matrix has the form of
aedditdi )2 ged(diy—dp/2
THeu=| gea-dp, o2 ae—q(dwd.m/z)* (5

in which a:%(1+8| /8|+1), B:%[1_8|/(8|+1)], and8| is
the dielectric constant ardj is the thickness of the layé,
(wherel=1,2, ... k). In this way, the electrostatic behavior

On the other hand, the KCFS can also be expressed as tfj¢|ayered medium can be achieved by multiplying matrices

limit of the generation of the sequenc€(. Let C¥
=S'A,;, it follows c{P=A;,, cW=aAA, cP
=AAA1, ..., CR =AAA_;...AA,, and in gen-
eral, C¥=c, +cl, . If the interval number of the gen-
eration C is defined asF®, FI is satisfied byF{
=F®, +F®, with F;=i+1 (i=0,1,...k—1). We de-
note the number oA (i=1,2, ... k) in C¥ asNM(A).
The ratios of these numbers are defined ag
=lim,_ [ NM(A)/NE(A)]. It turns out that the sefty;}
satisfies

k
7t m=1,

Lipge=mimer==nn-1=-=n3:172. (1)

Therefore all these ratiog; = nt_i” (1<i=<Kk) are irratio-
nal numbers between zero and unity except1. It has
been provetf that the KCFS are quasiperiodic for<k

<5; while for k>5, the KCFS are nonquasiperiodic, yet

they are still ordering.

Thek-component Fibonac¢KCF) multilayers we studied
here consist of k different kinds of layers Ay,
Ay, LA, LA with dielectric constantde;(w)} and
thicknessedd;}, respectively(wherei=1,2,...k). Now

we consider collective excitation in the KCF dielectric mul- and®g
tilayers. In the electrostatic limit, the electrostatic potential

® obeys the Laplacian equatidf?®(r,t)=0. Let z axis be

of the different layers.

Here we aim to study thek-component Fibonacci
multilayer C¥ sandwiched between two media of material
A1, the corresponding transfer matrix is

ME=ME M, (6)
e e
TOTE, ., ME =THTE . TR, TR TR There-

fore the whole multilayer is represented by a product matrix
M relating to the initial and the final electrostatic potential
through the multilayer. By considering the boundary condi-
tion, the dispersion equation can be obtained. From the dis-
persion equation, the features of the interface optical
phonons in the KCF dielectric multilayers can be derived. In
the following sections, we are going to perform the calcula-
tions with two kinds of boundary conditions: the free-
boundary condition and the periodic-boundary condition, re-
spectively.

lll. DISPERSION RELATION
WITH FREE-BOUNDARY CONDITION

Suppose the environment of dielectric constart.is The
electrostatic potential on the left and right boundari®s,
can be written a®| (g = ¢ (ryeXPi(gX—wt)}. The
constraint equations are givehy

perpendicular to the multilayer planes, we assume each layer slefqd1/291_ sleqd1/2h1=see’qdl’zglJrseeqdl’zhl,

is isotropic, so that without loss generality, the wave vegtor

may be taken parallel to theaxis. It follows that the elec-
trostatic potential ®(r,t) can be written as®(r,t)

= ¢(z)expli(gx—wt)}, and

d2
(E—QZ)MZ):O- )

It is clear that the general solution of E(R) can be ex-
pressed ag,(z) =g,e%+h,e” 9% in each layer, whergis an
index of the layer, . While at the interface of layer&, and
A, 1, the electrostatic continuum conditions require

e1(2)=¢14+1(2),

dei(2)
dz

dei1+1(2)
dz

g =€41 ©)

dy/2 —qdy/2 _ dy/2
g189%7gy 1 — g8 9Ny = g9 gy 4
+eee 1hy ., (7)

where g, is the dielectric constant of layek,;, d, is the
thickness of the same layéM,is the total number of layers in

the multilayer, andqg is the in-plane wave vector. On the
other hand, as we discussed in Sec. Il, the recursion equation
for the KCF multilayer can be expressed as

(9N+1) (k)< 91) (mll le) 91)
= M n = y
hn+1 hy My Mg/ | hy
where my;,my,,My;, My, are complicated function relating
to the wave vectoq, the frequencyw, the thicknessesd;}

of layers and the dielectric constafits(w)}. By combining
Egs.(7) and(8), we have the dispersion equation as follows:

8

If a local coordinate is chosen for each layer and its origin is (si—eg)emdlmlﬁ (g,— ge)zeqdlmlz— (e1+ ',36)2@(1dlm21

positioned at the center of this layer, the electrostatic poten-

tial can be expressed in a matrix form as

(€)

2 2
—(e1—&g)Mx=0.



PRB 59 INTERFACE OPTICAL PHONONS INk-COMPONENT ... 3601

(b)
50

3sli

FIG. 1. The dispersion relation of the coupled
interface optical phonons for thecomponent Fi-
bonacci dielectric multilayers with the following
generation, the total number of layers and the to-
tal number of layerA,: (a) C{9 ,N=377,
N(A;)=233; (b) C{J ,N=872, and N(A;)
=277; (c) C5Y ,N=907, andN(A,)=250; (d)
Cc$) ,N=1001, and N(Ag)=245; (¢ C% N
=533, andN(Ag) =119; (f) C{Y ,N=655, and
N(Ag) =105, respectively.

the physical properties of the interface optlcalfor six KCF multilayers with differenk. It is shown that the
collective excitations occur only in frequency regimes where
the ratioe,(w)/e; (i= ... k—1) is negative, because
the interface optical phonons may be considered as a linear
superposition of surface modes which localized at each in-

calculated with free-boundary condition. To demonstratd®’face in the multll(layer In e‘:‘Ch phonon dispersion spec-
clearly the effect of the underlying geometrical structuresrum, there exist R} (A,) = 2F {9, eigenfrequencies, where
we consider a simple setting. The dielectric constantdN{P(Ay) is the total number of layeA, in the multilayer
{ei(w)} corresponding to thek different layers {A;}  with the generationC{?, and F{, satisfiesF{¥=F{,
(i=12,...k=1k) are chosen as following:{e;}  +F{®, with F;=i+1 (i=0,1,...k-1) (as mentioned in
(i=1,2,...k—1) are frequency independent, but only the Sec. I)). This is due to the fact that the dispersion equation
dielectric constant of layeh, ko 'S frequency dependent (9) contains N(A,) powers ofw. It is interesting to note
It follows that e (®) =& ..(w*— ©f o) (W2~ @i o) for  that each spectrum is divided into two dual branches,
alkali halide or polar semiconductor materials, wherg, o  and w _. Similar to the situation of periodic multilayers,
andw 1o are the longitudinal-optical and transverse-opticalthese two branches are separated by a gap. With the increas-
frequencies. As an example, we takg.=2.34w,1o ingvalue ofqd;, @, bandis down-shifted angs_ band is
=32.01 THz, andw, ,=50.74 THz for NaCl,&,;=3; up-shifted in frequency because of the screening provided by
andej=g,X 7; (i=2,3,... k—1), wherey; can be given the layers{A;} (i=1,2,... k—1). For highqd,, the spec-
by Eg.(1). And the environment is supposed to be vacuumf{ra are highly degenerated. The calculations show that there
i.e., e.=1. At the same time, the thlcknesses of khdiffer-  exist limiting frequencies when the thickneds approaches
ent layers{d;} are chosen ad;=d; X ; (i=2,3,...k). infinity. For k=2, asd;—, bothw, andw_ bands ap-
Thereafter the interface optical phonons in the KCF di-proach the single-interface surface-mode frequensy
electric multilayers with different number of incommensu- =41.2772703762 THz, which satisfies the implicit disper-
rate intervalsk are investigated. The calculations are per-sion relatione,(w)=—¢;. When k>2, the limiting fre-
formed on different KCF multilayers. Figures(al-1(f) quencies obeys the equatidm,+ e, (w)][ek_1+ex(w)]
illustrate the dispersion relations of interface optical phonons=0. For k=3, the limiting frequencies arew;

Obviously,
phonons of the KCF multilayers are decided by the disper:
sion equation(9).

Based on Eqgs(6) and (9), the interface optical phonon
dispersions in the KCF dielectric multilayers are numerically
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=41.2772703762 THz anes,=44.6678969765 THz. For +3,F\, ;. For example, Fig. ®) is for 3-component

k=4, @, remains, whilew, equals 44.1712652378 THz. Fibonacci multilayer with generatioB{}(k=3). The sub-
For k=5, w, keeps the sa_me value,_whliaz reduces t0  pandw, or w_ has totallyN{3)(A;) =F =277 eigenfre-
?3-@206?62;0;35%:21-35;;_Ti' and E_Aflzoéz'gésdoegcéigs‘?ri' quencies. They are divided into @e., k+1) groups, and
urther to 43. z and 42. z, L (3)_ 3)_ 3)_ (3)

respectively. Actually, these limiting frequencies are the iso-cach group contain; =88, Fjg =41, F1;' =60, andF;

lated modes, and approach the surface excitations from the 88 eigenfrequencies, respectively. Moreover, every sub-

) group is separated into+1=4 groups further as indicated
isolated slab A;AA;) and the slab A;A A1), respec- . . .
; ) KL . in the inset of Fig. ). In fact, each sub-band in the phonon
g\éig’ it"‘;gﬁgv\fget}hgg?knofss\jvlh:r%'?rfic;es w;(f;nlty(ln this dispersions of the KCF multilayers with<lk<5 is self-
W’hile for Iowerqdl_>th’e optical_phé)r;(;r; aisbersion spec similar, which consist ok+ 1 filial generations as illustrated
1 .

] : ) in Figs. 2a)—2(d) (wherek is the number of different incom-
tra of the KC.F mult!layers with gk;s consist ofk+1 .mensurate intervalsPhysically this property originates from
bands. The hierarchical characteristics are clearly shown if, . configuration characterizations of thecomponent Fi-

Figs. Za)—Z_(d), which gives the elge_nfrequency VErsus thebonacci structures. On the other hand, it is noteworthy that
ngmber of 'nterfﬁge optical modes in t.he KCF multlllayersthe interface optical phonon dispersion is nonuniform as
with generatiorCy,” whenqd, =0.6. We find that the eigen- g\ in Figs. 2a)—2(d). For a specific KCF multilayer, in
frequencies in the subbands of, or w_ are d'V'de(% N0 the w . band, the low-frequency region is wider than that in
kil groups, each group consists kOan—zkv the high-frequency region; while in the _ band, the low-
FO o) F % 2y - Fio 1, andF{Y,, eigen-  frequency region is narrower than that in the high-frequency.
frequencies, respectively. So the total number of eigenfreThis feature reflects the changes of quasiperiodicity in the
quencies in each band isSN®(A)=F® =F® KCF structures (xk<5).
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It is interesting to mention that for loweyd, , the optical whereq is the wave vector anD is the total thickness of the
phonon dispersion spectra of the KCF multilayers with multilayer. We define¢®=1TrM{, where TM® is the
>5 do not show self-similarity. Figure@ and 2f) illus-  trace of matrixM{¥ . Therefore under the rational approxi-
trate the eigenfrequency versus the number of interface opnation, the eigenfrequencies satisfy
tical modes in the KCF multilayers witk=6 andk=10,
respectively. It seems that the eigenfrequencies in the sub- ng)zcoqu. (11
bands ofw , or w_ are separated into several groups, but
the separation rule is not as obvious as that for the case of According to Eqs(6), (10), and(11), the frequency spec-
1<ks<5. This difference may arise from the fact that thetra of the KCF dielectric multilayers can be calculated. The
KCF structures wittk>5 do not possess the Posit property parameters, such as the dielectric constéaiée)} and the
and they do not have quasiperiodicity. Further studies on thithicknesseqd;} of layers {=1,2, ... k), are the same as
aspect are being undertaken. described in Sec. lll. Figures(®-3(f) illustrates the fre-

quency spectra of the KCF multilayers wikhdifferent in-
commensurate intervals. It is shown that the frequency spec-
IV. FREQUENCY SPECTRA trum of the KCF multilayer contains two sets of dual
WITH PERIODIC-BOUNDARY CONDITION structures:w , and w_. For the KCF multilayer with an

The numerical calculations of interface optical phonons in'dem'cal Ig,bbyéncreecljsmg the generatll\(/?n numtpe:rr\]ore an?) ¢
the KCF dielectric multilayers can also be carried out withMOre subbands and gaps emerge. ioreover, the number o

the periodic-boundary condition, which is usually called ra-Subbands in each se, or w_ is F.l(k*)k’ Wherfj IS :[(he
tional approximation. The recursion equation for the KCFgeneration number of the KCF multilayer, afigf)=F{,
mu|ti|ayers can be rewritten as + ng,)k with F,= i+ 1(| =0,1,... k—l). It is enlightening
to compare the interface optical phonon distributions of the
KCF multilayers with differenk. As shown in Fig. 3, for the
(9N+1) _ M(k)( gl) _ ( My m12) ( 91) :e‘qD( 91 almost identical number of subbands, the widths of subbands
hy My, My, \ hy hy)’ decrease when the number of incommensurate intetvals
(10 increases. For example, whkr 2 andj =8, the total width

hNJrl
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of F{?)=26 subbands i€%°;Aw(?=3.62851 THz; when 1.00 T
k=3 and j=10, the total width ofF{3)=26 subbands is i k2
3% Aw=1.49679 THz; wherk=4 andj=12, the total

width of F{)=28 subbands is 3%,Aw® 0.75¢ .
=0.586151 THz; wherk=5 andj= 14, the total width of
F{8=30 subbands i&°,Aw(®=0.194019 THz; wherk 050l |

=6 and j=16, the total width ofF{®)=32 subbands is &
332 Aw(®=0.0613213 THz; and whek=10 andj=23, *
the total width of F{{?)=32 subbands is332,Aw(10
=0.0229262 THz. Therefore, the subbands in the frequenc
spectra of the KCF multilayers gradually develop to be more
discrete and much narrower whkrpropagates, and the fre-
qguency distribution of the KCF multilayers may approach
that of a disordered system at a sufficient lakg&rom this
point of view, wherk varies, the KCF multilayers provide a o
generic model displaying the evolution from periodicity,  Fig. 4. f(«) spectra for the frequency distributions of the KCF
quasiperiodicity to randomness. Additionally, Fig&)3-3(f)  muitilayers wherek=2, I'15/T1,=1: k=3, [';s/T1s=1: k=4,
implies that when the generation numies large enough, [ /T ;=1: k=5T5,/T=1; k=6, [',4/T55 = 1, respectively.
the frequency spectra of the KCF multilayer are neither dis-
crete nor continuous. These spectra can be characterized Bynsidered as the dimension of the set of subbésgdisn the
statistical methods such as multifractal analysis. frequency spectrum. Particularly, it should be emphasized
Multifractal analysis is a tool for characterizing the naturethat f(«) spectrum of a frequency distribution has the fol-
of a positive measure in a statistical seffsélere suppose  |owing physical implicationsti) The abscissay, of the sum-
the measure can be generated by dividing an unit region intghjt of f(«) curve, which corresponds t@=0, is the
pieces{s} (i=1,2,...N) with measurep; and sizel;.  strength of a generic singularity. Obvioudly) <1, which
Then the partition function is defined'ds means that the support of the subbands is not the whole
axis. Moreover, since the widths of the subbands decrease
when k propagates, the fractal dimension of the support
f(ag) decreases corresponding(ii) The extremes,,;, and
o amax Of the abscissa of & «) curve represent the minimum
which satisfies and the maximum of the singularity exponentwhich acts
. as an appropriate weight in frequency measure. In tagt,
F(Q’T):IIL”:) I'(Q.7.{si}.I)=const. and o, characterize the scaling properties of the most con-
centrated and most rarefied region of the frequency measure
The paramete® provides a “mathematical microscope” for respectively. As the increasing of the number of incommen-
exploring the singular measure in different regions. Once thaurate intervalk in the KCF multilayers A = amax— @min
mass exponent(Q) is determined, the fractal dimension of decreases gradually. This may imply that the frequency dis-
the set of pieces with singularity strengthf(«), can be tribution of the KCF multilayer approaches the behavior of a

0.50 0.75 1.00

N opR
F(Q,r,{si},U:;l T (12)

derived from random system whekiincreases. The above scaling analysis
indicates the frequency spectrum of the KCF multilayers is a
_d7(Q) generic multifractal. Wherk increases, the narrower sub-
«(Q)= dQ bands and wider gaps are found in the frequency spectra of
the KCF multilayers, the fractal dimensions definitely de-
f(Q)=Qa(Q) - 7(Q). (13  crease.

The f(a) singularity spectrum provides a mathematically
precise and intuitive description of the nonuniform systems.
In our case, we consider the subbands in the frequency spec- We have presented the interface optical phonons in the
traw, orw_,l; represents the width of théh subband, and  k-component FibonacdKCF) dielectric multilayers, which

the measure is given em=1/FJ(k)k. A straightforward ap- containsk different incommensurate intervals and can be
plication of multifractal formalism requires the evaluation of generated by the deterministic substituted rules. Although
exact integral of the frequency measure of the structures witthe KCF structures have long-range order, they are highly
infinite length over small segment of length in the spaceaperiodic. For studying the physical properties related to
Meanwhile the computer time for calculation will increase them, we are not able to find a powerful scheme equivalent
incredibly. To solve this problem, an approximate scheme iso Bloch theorem for periodic structures. What we can do is
chosen as taking . 1 /I',=1 when the generation number to use finite structures to approach the infinity. Meanwhile,
is large enough. Figure 4 gives tihéa) spectra correspond- the transfer-matrix method is helpful to obtain the dispersion
ing to the frequency spectra in the KCF multilayers. It isrelations and frequency spectra of the collective excitations,
shown that the data points fit into smooth curves, which is and boundary conditions should be introduced. Both free-
characteristic of an infinite structure. The quantifyr) is  boundary condition and periodic-boundary condition are

V. CONCLUSION
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commonly used. With the free-boundary condition, the inter-dom in the KCF dielectric multilayer system is limited,
face optical phonon dispersion in the KCF multilayers formstherefore the phonon dispersion displays the pointlike dis-
discrete spectra and shows hierarchical characteristic. Pagrete spectra. While with the periodic-boundary condition,
ticularly for the KCF multilayers with ¥k<5, which is  the “multilayer” is regarded as an “unit” and repeated pe-
quasiperiodic, the phonon dispersion spectra possesses twedically. So the number of the degrees of freedom in the
dual self-similar structures withk+1 filial generations System increases Significant|y_ As a resu|t, the phonon fre-
(wherek is the number of different incommensurate inter- quency distributions of the KCF dielectric multilayers are
vals). With the periodic-boundary condition, the frequenciespynctuated continuously. Generally the results from the
of interface optical phonons in the KCF multilayers are periodic-boundary condition have some advantages in scal-
punctuated continuous, and it is expected to display a multing analysis, while the results from the free-boundary condi-
fraCtal behaVior. Mu|tifraCta| ana|ySiS reVeaIS that the dimen"tion may be easier to Compare W|th experimentS. We expect
sion spectrum of singularitié§ «) is a smooth function with  that Raman scattering investigations on the interface optical
a summitf(a,)<1. The frequencies do not have an abso-phonons in the KCF dielectric multilayers will provide inter-
lutely continuous component. Therefore, the frequency disesting information in a further study.

tributions of the interface optical phonons in the KCF mul-

tilayers are singular continuous and possess multifractal

properties. Evidently there are some differences on the inter- ACKNOWLEDGMENTS
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