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Nonperiodic metallic gratings transparent for broadband terahertz waves
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In this work, we demonstrate both theoretically and experimentally that nonperiodic metallic gratings can
become transparent for broadband terahertz waves. It is shown that broadband high transmission appears in
aperiodic metallic gratings (including quasiperiodic and disordered ones), which originates from the nonresonant
excitations in the grating system. Quasiperiodic and disordered metallic gratings effectively weaken and even
eliminate Wood’s anomalies, which are the diffraction-related characters of periodic gratings. Consequently,
both the transparence bandwidth and transmission efficiency are significantly increased due to the structural
aperiodicity. An optimal condition is also achieved for broadband high transparency in aperiodic metallic gratings.
Experimental measurements at the terahertz regime reasonably agree with both analytical analysis and numerical
simulations. Furthermore, we show that for a specific light source, for example, a line source, a corresponding
nonperiodic transparent grating can be also designed. We expect that our findings can be applied for transparent
conducting panels, perfect white-beam polarizers, antireflective conducting solar cells, and beyond.
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I. INTRODUCTION

The interaction between light and matter, which leads to
various interesting phenomena, is usually strongly dependent
on the structural symmetry and the ordering degree in
the natural or artificial materials. Based on the existence
or lack of long-range and short-range order, materials (or
structures) may possess periodic, quasiperiodic, and random
ordering, respectively. Specifically, periodic structures have
both long-range and short-range order; quasiperiodic struc-
tures bear long-range order but short-range disorder; and
random structures own neither long-range nor short-range
order. It is well known that periodicity in structures brings
about various important effects, such as what the Bloch
theorem illustrates, in solid state physics [1]. However, lack
of periodicity may also create fascinating features on some
occasions. For example, the extraordinary optical transmission
(EOT) was initially discovered by Ebbesen and coauthors [2] in
a periodic subwavelength hole array perforated on silver film,
but later on, Matsui et al. [3] significantly presented enhanced
transmission resonances of light through quasiperiodic arrays
of subwavelength apertures and opened new avenues for opto-
electronic devices [4–10]. Actually, in the past decades, quite
a few quasiperiodic structures [11–13], such as structures with
Cantor [13], Fibonacci [14–16], Thue-Morse, [17–19], and
double-period sequences [20,21], have received considerable
attention.

It is known that broadband EOT is usually difficult to
achieve in the metal/dielectric nanostructures. Fortunately,
by introducing self-similarity in the structures, people have
successfully realized broadband EOT in quasiperiodic (such
as Penrose-tiling) subwavelength metal/dielectric systems [3]
and also in plasmonic fractals [22]. Physically, broadband EOT
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in these systems originates from resonant excitations of surface
plasmons (SPs) [23] at multiple but discrete frequencies,
which restrict the transparency bandwidth and transmission
efficiency to some extent. Very recently, we utilized a periodic
design to successfully make structured metals transparent
for broadband infrared and terahertz waves by relying on
nonresonant excitation of spoof surface plasmons (SSPs) or
SPs [24–26]. Similar phenomenon are further found in optical
frequencies, which is explained by the anomalous impedance-
matching mechanism [27–30]. However, the broadband trans-
parence in periodic systems occurs for wavelengths larger than
the first-order Wood’s anomaly [24,25]. Around the Wood’s
anomalies [31,32], the transmission of electromagnetic waves
drops to zero because of the interference between the wavelets
scattered by the periodic structures, which is essentially a
diffraction effect of the periodic structures. To further broaden
the transparency bandwidth and improve the transmission
efficiency of structured metals, we now try to exploit aperiodic
structures to break the transitional symmetry and decrease the
degree of ordering in the system, and then weaken or even elim-
inate Wood’s anomalies, thus achieving broadband high trans-
parency based on nonresonant excitations in aperiodic metallic
gratings.

In this paper, we have theoretically and experimentally
demonstrated that broadband high transmission appears in
aperiodic metallic gratings (including quasiperiodic and disor-
dered ones), which originates from the nonresonant excitations
in the grating system. Quasiperiodic and disordered metallic
gratings are capable of weakening and even eliminating
Wood’s anomalies, which consequently increase the trans-
parence bandwidth and improve transmission efficiency in
the terahertz region. Furthermore, with a specially designed
nonperiodic metallic structure (a metallic grating with a
gradually varying air void filling ratio, for example), the system
can become transparent for transverse-magnetic (TM) polar-
ized line sources. The broadband transparence for structured
metals may have numerous important applications, such as
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for conducting panels [7,33–35], white-beam polarizers [36],
antireflective solar cells [27,37], etc.

The paper is organized as follows. After the Introduction, in
Sec. II we theoretically investigate the broadband transparence
in nonperiodic metallic gratings based on detailed analytical
solutions of Maxwell’s equations. The optimal incident angle
for broadband transparency of metallic gratings is achieved.
In Sec. III, by using the finite-difference time-domain (FDTD)
method, we present the numerical calculations on the optical
transmission through periodic, Fibonacci, and disordered
metallic gratings, respectively. And electrical field distri-
butions prove that broadband transparency in the metallic
gratings originate from the nonresonant effect. In Sec. IV
we show experimental results for the broadband transparency
of nonperiodic metallic gratings. Furthermore, in Sec. V, a
metallic grating with a gradually varying air void filling ratio
is demonstrated to be transparent for line sources. Finally, we
summarize our results in Sec. VI.

II. ANALYTICAL ANALYSIS ON BROADBAND
TRANSPARENCE IN NONPERIODIC

METALLIC GRATINGS

We consider electromagnetic waves traveling through a
nonperiodic metallic grating based on Maxwell’s equations.

Without loss of generality, we suppose that the nonperiodic
metallic grating is constructed by arranging units A and B
according to a nonperiodic sequence, such as the Fibonacci
sequence or a disordered sequence, etc. As shown in Fig. 1(a),
unit A has the overall unit size pA, metal strip width bA,
and thickness h; the corresponding parameters for unit B are
pB , bB , and thickness h, respectively. When TM-polarized
waves are incident on the sample, we can divide the space
adjacent to the sample into three regions: the incident region
(I) above the sample, the sample region (II), and the emitting
region (III) below the sample. To simplify the analysis, we
defined the vertical positions of the top and bottom grating
surfaces as z = 0 and z = h, respectively. We consider the
regions I (z < 0) and III(z > h) as the free space of air, and
the metal is treated as an ideal metal. It follows that the y

component of the magnetic field in regions I and III can be
expressed as

HI
y = exp (ikx0x + ikz0z) +

∑
m

rm exp (ikxmx − ikzmz)

H III
y =

∑
m

tm exp (ikxmx + ikzmz), (1)

where kxm = kx0 − �kxm, �kxm is provided via high-order
diffractive modes, kzm = (k0

2 − kxm
2)1/2, kx0 = k0 sin θ , and

BA

bBA

h

E

k

HX

Z

Y

p

(a)

b

p

ytivitti
msn arT

Wavelength mm( )

ytivitti
msnar T

Wavelength mm( ) Wavelength mm( ) Wavelength mm( )

(b) (d) (f) (h)

B BA A A A

68 68 68 68

0 0 0 0

B B A

(c) (e) (g) (i)

Periodic grating S2( ) Disordered grating S4( )

B A A B

Periodic grating S1( ) Fibonacci grating S3( )

FIG. 1. (Color online) (a) Schematic of metallic grating with nonperiodic sequence (Fibonacci sequence, disordered sequence, etc.)
constructed by units A and B. Calculated transmission spectra for TM polarization of structures: a periodic metallic grating (S1) constructed by
unit A when incident angle (b) θ = 0◦ and (c) θ = 68◦; a periodic metallic grating (S2) constructed by unit B when incident angle (d) θ = 0◦

and (e) θ = 68◦; a metallic grating with the tenth-generation Fibonacci sequence (S3) constructed by units A and B when incident angle (f)
θ = 0◦ and (g) θ = 68◦; a metallic grating with disordered sequence (S4) constructed by units A and B when incident angle (h) θ = 0◦ and (i)
θ = 68◦. Unit sizes of units A and B are pA = 300 μm and pB = 500 μm, strip widths of units A and B are bA = 210 μm and bB = 350 μm,
and the thickness of all gratings is h = 200 μm.
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k0 = 2π/λ, rm and tm are the mth reflection coefficient and
transmission coefficient, respectively. When the wavelength
is much larger than the sizes of the constituent units, high-
order diffractive modes are evanescent and are neglected for
simplicity. Thus Eq. (1) is simplified as

HI
y = exp(ikx0x + ikz0z) + r0 exp(ikx0x − ikz0z)

H III
y = t0 exp(ikx0x + ikz0z), (2)

with kz0 = (k0
2 − kx0

2)1/2 = k0 cos θ , kx0 = k0 sin θ , and
k0 = 2π/λ.

In region II, since the metal can be taken as ideal metal
in the present terahertz regime, the magnetic field is zero
except in the slits (pn < x < pn + an), where pn represents
the corresponding starting coordinate of the nth slit, and an

represents its width. The magnetic field in the nth slit (pn <

x < pn + an) can be simply expressed as the zeroth-order
rectangular waveguide mode:

H II
ny = cos[q(x − pn)][Mn exp(iβsz) + Nn exp(−iβsz)], (3)

where βs is the wave number in the slits, q is the eigen wave
vector of the waveguide, and Mn and Nn are component co-
efficients, respectively. The relation between the x component
of the electric vector and the y component of the magnetic
vector is given as

Ex = − i

ωε

∂Hy

∂z
. (4)

The boundary conditions of the electric fields at the two
grating surfaces should be satisfied, i.e.,

∫ D
2

− D
2

EI
x

∣∣
z=0 dx =

∑ ∫ pj +aj

pj

EII
jx

∣∣
z=0 dx

∑ ∫ pj +aj

pj

EII
jx

∣∣
z=h

dx =
∫ D

2

− D
2

EIII
x

∣∣
z=h

dx. (5)

Meanwhile, the boundary conditions of the magnetic fields
follow the relation

1

D

∫ D
2

− D
2

HI
y

∣∣
z=0 dx = 1

W

∑ ∫ pj +aj

pj

H II
jy

∣∣
z=0 dx

1

W

∑ ∫ pj +aj

pj

H II
jy

∣∣
z=h

dx = 1

D

∫ D
2

− D
2

H III
y

∣∣
z=h

dx, (6)

where W = ∑
aj represents the sum of the width of all slits,

and D is the total width of the sample, respectively.
By solving Eqs. (5) and (6), we can derive the reflection

coefficient as

r0 =
(
k2
z0D

2
/
W 2 − β2

s

)
tan(βsh)(

k2
z0D

2
/
W 2 + β2

s

)
tan(βsh) + 2iβskz0D/W

. (7)

Equation (7) indicates that if

k2
z0D

2
/
W 2 − β2

s = 0, (8)

the reflection coefficient reaches its minimum value r0 = 0.
When the slit is vacuum, we have βs = k0. Therefore once
Eq. (8) is satisfied, zero reflection and high transmission are

achieved. Furthermore, the optimal incident angle for high
transmission follows:

θf = arcos (W/D) . (9)

Note that Eq. (9) for nonperiodic gratings looks like the
expression for periodic gratings [24,25], but here in Eq. (9), the
air void filling ratio W/D is an average quantity representing
the proportion of the empty space with respect to the volume
of the entire nonperiodic grating.

The above analysis indicates that broadband extraordinary
transmission is a universal property of one-dimensional (1D)
metallic gratings under oblique incidence. The broadband
transparence in aperiodic metal gratings is not sensitive to the
structural details of the grating when the incident wavelength
is much larger than the sizes of the constituent units. Instead,
it is primarily dominated by the averaged structural geometry,
such as air void filling ratio.

III. NUMERICAL SIMULATIONS ON BROADBAND
TRANSPARENCE IN METALLIC GRATINGS

Based on the FDTD method [38], we have carried out the
numerical calculations on the optical transmission through
several metallic gratings with periodic, Fibonacci, and dis-
ordered sequence, respectively. All these metallic gratings are
constructed by units A and B. In the calculations, unit A has
unit size pA = 300 μm, metal strip width bA = 210 μm, and
thickness h = 200 μm, while the corresponding parameters
for unit B are pB = 500 μm, bB = 350 μm, and h = 200 μm,
respectively. The numerical calculations are implemented
based on the FDTD method with commercial software package
LUMERICAL FDTD SOLUTION 8.0.1. Metals in the terahertz
region can be considered to be perfect electric conductors
(PECs), and we set the relative permittivity of the metal to −1
and the conductivity to 1.6×107(
 m)−1 in the subsequent
calculations, where σ/(ε0ε ω) � 1 is satisfied for a good
electric conductor. (Here σ and ε stand for the conduc-
tivity and the relative dielectric permittivity of the metal,
respectively.)

For the periodic metallic grating (S1) constructed by
repeating unit A, when the incident angle is θ = 0◦, the
high-transmission peak [Fig. 1(b)] is caused by Fabry-Perot
(FP) resonance occurring at λ = 2h/N + �N , where N > 0
is an integer and �N is the redshift of the peak [39–41].
Additionally, broadband high transmission caused by the
nonresonance effect occurs around the optimal incident angle
of θf = 68◦ when the wavelength λ is larger than the first-
order Wood’s anomaly of λWD1 = pA(1 + sin θ ), as shown in
Fig. 1(c). For the periodic grating (S2) constructed by repeating
unit B, a similar FP resonance can be found at normal incidence
[Fig. 1(d)], but the FP resonance peak is partially truncated
by the Wood’s anomalies. At oblique incidence, as shown in
Figs. 1(c) and 1(e), both periodic gratings (S1 and S2) have the
same optimal incident angle of θf = 68◦ because they have the
same ratio (pi − bi)/pi = 30% (i = A,B) [24,28]. Note that
in the short-wavelength range, Wood’s anomalies appear due to
the diffraction effects, which sharply interrupt the continuous
high-transmission spectra. Therefore broadband transparency
in the periodic metallic grating occurs only for wavelengths
larger than the first-order Wood’s anomaly. However, this
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situation will be significantly changed for nonperiodic metallic
gratings as follows.

The Fibonacci metallic grating (S3) constructed by units
A and B is produced by repeating the substitution rules
[11–13] A → AB and B → A. We keep the air void filling
ratio at (pA(B) − bA(B))/pA(B) = 30% for each unit. Here
our Fibonacci structure (S3) contains 89 units. When the
TM-polarized waves go through the Fibonacci grating at
normal incidence, as shown in Fig. 1(f), the wavelength of
high transmission caused by FP resonance occurs around
the similar one as the periodic gratings [Figs. 1(b) and
1(d)], because these gratings here have the same thickness,
and the FP resonance peaks are mainly determined by the
sample thickness. However, at oblique incidence, it is shown
that the broadband high transmission caused by nonresonant
excitations, which we will demonstrate later, still occurs
around the optimal incident angle of θf = 68◦, as shown in
Fig. 1(g). We can see that the Wood’s anomalies in Fig. 1(g) are
significantly weakened by the structure changing from periodic
to Fibonacci sequence. Note that the first-order Wood’s
anomalies move to the wavelength λFib = pF (1 + sin θ ),
where pF = (τ pA + pB)/(1 + τ ) with the golden ratio τ =
(
√

5 + 1)/2. Obviously, λFib is between the first-order Wood’s
anomalies λWD1 = pA(1 + sin θ ) and λWD2 = pB(1 + sin θ )
of the periodic gratings in Fig. 1(g). For the incident waves
with λ > λFib, we can achieve broadband high transmission at
an optimal incident angle θf . Therefore quasiperiodicity in the
Fibonacci structure has significantly suppressed the Wood’s
anomalies yet effectively kept the nonresonant excitations
that we discuss later, which eventually led to broadband high
transmission in the Fibonacci metallic grating.

Meanwhile, the disordered grating (S4) contains two basic
units A and B just the same as Fibonacci grating but with a
disordered sequence, where unit A and unit B are arranged
randomly. Here our disordered structure (S4) contains a total
of 100 units. Figures 1(h) and 1(i) are the calculated trans-
mission spectra of TM waves in disordered metallic grating
at incidence angles of θ = 0◦ and θ = 68◦, respectively. At
normal incidence, the wavelength of high transmission caused
by FP resonance occurs because the gratings have the same
thickness as those we mentioned above; at an oblique incidence
of θf = 68◦, it is clearly shown that the broadband high
transmission caused by the nonresonance effect exists as
shown in Fig. 1(i). Different from the periodic and Fibonacci
gratings, the Wood’s anomalies disappear in this disordered
metallic grating. This indicates that the randomness in the
structure has completely broken both long-range and short-
range ordering and manifested broadband high transmission
of the TM-polarized waves in an extremely wide waveband.

It is interesting to discuss the dependence of the optimal
incident angle on air void filling ratio W/D. As shown in Fig. 2,
we illustrate the optimal incident angle as a function of air void
filling ratio W/D in a series of disordered gratings, which are
obtained by Eq. (9) and FDTD simulations, respectively. In
each grating sample, we randomly generate the width of all
the slits and strips but fix air void filling ratio, totally have
for about 4-cm-long sample with 100 metal strips. These two
sets of results match well, as shown in Fig. 2, particularly
in the range with small W/D. As W/D becomes larger, the
electromagnetic field in the slits cannot be simply expressed

FIG. 2. (Color online) Dependence of the optimal incident angle
on the average air void filling ratio W/D obtained by θf =
arcos (W/D) (black line) and FDTD simulation (red dot). In the
simulation, the width of all slits and strips are generated randomly,
but the average air void filling ratio W/D is fixed for each simulation
sample. Each sample of our simulation is about 4 cm in width and
contains about 100 metal strips.

as the zeroth-order rectangular waveguide mode; instead, the
high-order modes should be included in the analytical analysis.
The high-order modes may reduce the wave number of the ter-
ahertz waves propagating through the slits, and then influence
the overall the reflection coefficient, which leads to the larger
θf predicted by Eq. (9) compared to FDTD simulations.

For further understanding the physical mechanisms of the
broadband high transmission, we have calculated the electric
field distributions in periodic and nonperiodic gratings at the
high-transmission wavelengths for both normal incidence and
optimal angle incidence (as shown in Fig. 3). For normal
incidence, all the electric field (|E|2) distributions are very
similar in periodic gratings [Figs. 3(a) and 3(c)], Fibonacci
grating [Fig. 3(e)], and disordered grating [Fig. 3(g)], and we
can find high |E|2 distribution at every corner of the strip, which
means high transmission comes from resonant excitations, so
they belong to narrow band effects. However, for optimal
incidence at θf = 68◦, all the |E|2 distributions in periodic
gratings [Figs. 3(b) and 3(d)], Fibonacci grating [Fig. 3(f)], and
disordered grating [Fig. 3(h)] show no obvious enhancement
of electric fields at two neighboring corners, and thus the
resonances do not happen in these systems. These evidences
indicate that the broadband high transmission is indeed caused
by a nonresonance effect in the metallic grating systems.

IV. EXPERIMENTS OF THE BROADBAND HIGH
TRANSMISSION IN METALLIC GRATINGS

The above broadband high transmission in metallic gratings
can be further experimentally demonstrated. In the experi-
ments, we fabricated four types of gratings containing two
periodic gratings (S1 and S2) and two nonperiodic gratings (S3
and S4), just as discussed in Sec. III. During the fabrication
process, the grating pattern was first designed via software
(AutoCAD, 2007) and printed on both sides of a stainless-steel
plate via photochemical reaction. In order to construct the
gratings, the uncoated parts of the stainless-steel surfaces
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FIG. 3. (Color online) Calculated electric field (|E|2) distributions of a periodic metallic grating constructed by unit A: (a) θ = 0◦ at
λ = 525 μm; (b) θ = 68◦ at λ = 1200 μm. Calculated |E|2 distributions of a periodic metallic grating constructed by unit B: (c) θ = 0◦ at
λ = 635 μm; (d) θ = 68◦ at λ = 1200 μm. Calculated |E|2 distributions of a metallic grating with the tenth-generation Fibonacci sequence
constructed by units A and B: (e) θ = 0◦ at λ = 550 μm; (f) θ = 68◦ at λ = 1200 μm. Calculated |E|2 distributions of a metallic grating
with disordered sequence constructed by units A and B: (g) θ = 0◦ at λ = 550 μm; (h) θ = 68◦ at λ = 1200 μm. Unit sizes of units A and B
are pA = 300 μm and pB = 500 μm, strip widths of units A and B are bA = 210 μm and bB = 350 μm, and the thickness of all gratings is
h = 200 μm.

were then etched by chemicals on both sides. To protect
the stainless-steel grating and enhance the conductivity, all
surfaces, including the slit walls, were coated with a nearly
3-μm-thick gold film by magnetron sputtering. The transmis-
sion spectra were measured by a terahertz real-time spectrom-
eter (EKSPLA/THz, Lithuania). By scanning the delay line,
we obtained the time-domain signal E(t) of the polychromatic
terahertz pulse transmitted through the samples. Thereafter,
the transmission spectrum was obtained from the Fourier
transform of E(t) within the 0.2–1.5 THz frequency range
and normalized with respect to the transmission spectrum of
air.

Figures 4 and 5 show the sample photographs and mea-
sured transmission spectra of four different metallic gratings,
respectively. In the transmission spectra of four gratings at
normal incidence, we can find FP resonance peaks occur
around the same wavelength because grating samples here

have the same thickness. Specially, the FP resonance peak is
partially truncated by the Wood’s anomaly in periodic gratings
[as shown in Figs. 5(a) and 5(c)]; but in nonperiodic gratings
[to see Figs. 5(e) and 5(g)], they become much weaker, which
means that the Wood’s anomalies in nonperiodic gratings are
not obvious.

For optimal incident angles θf = 68◦, the periodic gratings
have high transmission for long wavelengths, larger than
that for the Wood’s anomalies, which is clear with a very
deep valley. For the S1 grating [as shown in Fig. 5(b)], the
Wood’s anomaly is at λ = 575 μm, where the transmittance
is less than 30% and the width of valley band is more than
80 μm. For the S2 grating [as shown in Fig. 5(d)], the Wood’s
anomaly is at λ = 950 μm, where the transmittance is 27%
and the bandwidth of valley is more than 200 μm. So for
further broadening the bandwidth of high transmission, we
are restricted by the Wood’s anomalies in periodic gratings.
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FIG. 4. (Color online) (a) Photograph of periodic metallic grating (S1) constructed by unit A. (b) Photograph of periodic metallic grating
(S2) constructed by unit B. (c) Photograph of a metallic grating with the tenth-generation Fibonacci sequence (S3) constructed by units A
and B. (d) Photograph of a metallic grating with disordered sequence (S4) constructed by units A and B. The scale bar is 1 mm for all the
four photographs. Unit sizes of units A and B are pA = 300 μm and pB = 500 μm, strip widths of units A and B are bA = 210 μm and
bB = 350 μm, and the thickness of all gratings is h = 200 μm.

However, once we break the periodic order, different results
are presented in Fig. 5(f) (Fibonacci grating) and Fig. 5(h)
(disordered grating). There are two little valleys in the
measured transmission spectra for Fibonacci grating (S3) at
λ = 530 μm and λ = 735 μm and none for disordered grating

(S4) when at the optimal incident angle of θf = 68◦. The
transmittance of the nonperiodic gratings remains very high
for wavelengths from 875 to 945 μm in the Fibonacci case,
for wavelengths from 965 to 1000 μm and wavelengths larger
than 1430 μm in the disordered case, and their transmittance
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FIG. 5. (Color online) Experimentally measured transmission spectra of a periodic metallic grating (S1) constructed by unit A when
incident angle (a) θ = 0◦ and (b) θ = 68◦. Experimentally measured transmission spectra of a periodic metallic grating (S2) constructed by unit
B when incident angle (c) θ = 0◦ and (d) θ = 68◦. Experimentally measured transmission spectra of a metallic grating with the tenth-generation
Fibonacci sequence (S3) constructed by units A and B when incident angle (e) θ = 0◦ and (f) θ = 68◦. Experimentally measured transmission
spectra of a metallic grating with disordered sequence (S4) constructed by units A and B when incident angle (g) θ = 0◦ and (h) θ = 68◦.
Experimentally measured transmission spectra are carried out at incident angle θ = 0◦ and θ = 68◦ for TM polarization. Unit sizes of units A
and B are pA = 300 μm and pB = 500 μm, strip widths of units A and B are bA = 210 μm and bB = 350 μm, and the thickness of all gratings
is h = 200 μm.
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(a) (c)

(b) (d)

Disordered gratingFibonacci grating

FIG. 6. (Color online) (a) Calculated and (b) experimentally measured angular transmission spectra for a metallic grating with the tenth-
generation Fibonacci sequence constructed by units A and B for TM polarization. (c) Calculated and (d) experimentally measured angular
transmission spectra for a metallic grating with disordered sequence constructed by units A and B for TM polarization. The color bars show
the transmission intensity. The white dashed lines represent the incident angle with maximum transmission. Unit sizes of units A and B
are pA = 300 μm and pB = 500 μm, strip widths of units A and B are bA = 210 μm and bB = 350 μm, and the thickness of all gratings is
h = 200 μm.

is more than 90%, which is higher than that for periodic
gratings.

From the above experimental measurements, we have
demonstrated that metallic gratings can become transparent
for extremely broadband terahertz waves under optical oblique
incidence, which is found in periodic, quasiperiodic, and
disordered gratings. The transparent bandwidth is broadened
and transmission efficiency is improved in quasiperiodic and
disordered systems due to the fact that Wood’s anomalies are
weakened or eliminated by nonperiodicity. In order to evaluate
the feature of high-transmission bands in the grating, we define
a broadband high-transmission factor as � = (1/σ ) (1/δ),

where σ =
√∫ λmax

λmin
(T − T̄ )2

/(λmax − λmin)dλ is the standard
deviation which reflects the discrete degree of transmission
compared with the mean value T̄ , and the quantity δ =∫ λmax

λmin
[(1 − T )/T ]2/(λmax − λmin)dλ describes the transmis-

sion deviation compared with perfect transmission. Obviously,
higher factor � indicates a band-broader and higher transmis-
sion. Based on the experimental data shown in Fig. 5, we find
that at the optimal incident angle θf = 68◦, �Fib

∼= 34.7 in Fi-
bonacci grating S3, and �dis

∼= 25.5 in disordered grating S4,
which are much larger than those in periodic gratings as �A

∼=
18.6 in S1 and �B

∼= 2.9 in S2. All these experimental factors
reasonably agree with the calculated ones. (Note: �A

∼= 10.6,

�B
∼= 4.8, �Fib

∼= 22.9, and �dis
∼= 21.0 from the data in

Fig. 1.) Therefore, compared with periodic cases, both Fi-
bonacci and disordered gratings achieve much better features
on broadband high transmission.

Actually, we can prove the phenomena on broadband high
transmission more clearly in the angular transmission spectra
for a metallic grating with the tenth-generation Fibonacci and
disordered sequence given in Fig. 6. It is obvious that the
Wood’s anomalies are weakened but still exist for Fibonacci
grating [Figs. 6(a) and 6(b)], but they nearly disappear for
the disordered metallic grating [Figs. 6(c) and 6(d)] because
of long-range disorder. Here, we have successfully broadened
the high-transmission band by making the units of the gratings
disordered, so as to achieve maximum breaking of the Wood’s
anomalies which affect the bandwidth. Further studies can be
carried on to find a unique aperiodic metallic structure with
a maximum feature of high-transmission band by optimizing
both the geometry of units and the ordering degree of the
structure.

V. DESIGN A SPECIFIC STRUCTURED METALLIC
GRATING TRANSPARENT FOR A LINE SOURCE

It is known that the terahertz waves, which cover the
frequencies from 1011 to 1013Hz, can bridge the gap between
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FIG. 7. (Color online) (a) Schematic of the specially designed
grating for the TM-polarized line source. The structure consists of
units along the X axis, which has a length of p = 0.4 mm and a
thickness of h = 200 μm. The distance between the line source and
sample is d0 = 2 mm. The air void filling ratio of each unit is decided
according to the incident angle ϕ. (b) Calculated transmission spectra
for different metallic gratings for the TM-polarized line source.
The black line is the transmission spectra of the specially designed
grating for the TM-polarized line source. The red line and blue lines
show the periodic grating with 30% and 40% air void filling ratio,
respectively.

the infrared and the microwaves in the electromagnetic
spectrum. The terahertz technology [42–44] has been applied
in information and communications, imaging and sensing,
biology and medical sciences, homeland security, and so
on. In order to contribute to these applications, one of the
key points is to manipulate the transmission of terahertz
waves efficiently and actively. In recent years, many novel
electromagnetic phenomena have been found in the terahertz
region [45–47], such as EOT through structured metallic films
and electromagnetically induced transparency (EIT) using
metamaterial. Most of those studies have focused on the
plane waves; however, in practical applications we may have
different kinds of light sources, such as point sources and line
sources. Our following simulations show that an extraordinary
transmission of light from a line source is also insensitive to the
grating periodicity, which makes it possible to design specific
structured metallic gratings to achieve broadband transparency
for specific light sources.

As an example, we designed a metallic grating with a grad-
ual variation of air void filling ratio to achieve transparency
of TM-polarized light from a line source along the Y axis.
As illustrated in Fig. 7(a), the structure consists of a large
number of units, which have the identical width p along the
X axis. If we define the unit exactly below the line source
as the zeroth order, the air void filling ratio of the nth unit
is determined by the local incident angle ϕ according to
tn = cos ϕn = d0/(d0

2 + n2p2)1/2, where d0 is the distance

between the line source and the grating. When the incident
angle ϕ increases, the ratio tn decreases. Therefore this
structure, which is specifically designed for a line source,
has a gradually varying air void filling ratio. Figure 7(b)
shows the simulated transmission spectra for several kinds
of metallic gratings using TM-polarized line sources. In
our simulation, the grating has the following parameters:
p = 0.4 mm, d0 = 2 mm, width of 3.2 cm, and thickness of
0.2 mm. The transmission here is normalized to the intensity
collected by the monitor in air. Obviously, our designed
metallic grating [black line in Fig. 7(b)] can achieve more
than 90% transmission for a line source. Interestingly, this
high transmission is comparable to the results of the periodic
grating for plane waves. In comparison, periodic gratings have
much lower transmission for line sources. For example, the
periodic grating with a constant ratio of air area of 30% has
a transmission value of about 40% [red curve in Fig. 7(b)]
under the incidence of a line source with d0 = 2 mm, and the
periodic grating with a 40% air void filling ratio has around
60% maximum transmission [blue curve in Fig. 7(b)], even for
long wavelengths. These results suggest that it is possible to
make structured metallic gratings transparent for various kinds
of light sources following the mechanism discussed in Sec. II.

VI. SUMMARY

We have theoretically and experimentally demonstrated
broadband high transmission of terahertz waves in quasiperi-
odic and disordered metallic gratings, which originates from
the nonresonant excitations in the grating system. Quasiperi-
odic and disordered metallic gratings effectively weaken and
even eliminate Wood’s anomalies. Consequently, both the
transparence bandwidth and transmission efficiency are sig-
nificantly increased due to the structural aperiodicity. We also
derive an optimal condition for broadband high transparency in
aperiodic metallic gratings. Experimental measurements at the
terahertz regime reasonably agree with both analytical analysis
and numerical simulations. Furthermore, we show that for a
specific light source, for example, a line source, a correspond-
ing nonperiodic transparent grating can be also designed. We
expect that these results would have potential applications in
many fields such as transparent conducting panels and stealth
objects. In addition, the observed phenomena may also shed
new light on the development of broadband metamaterials,
including sonic artificial materials.
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