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Intrinsic instability of the concentration field in diffusion-limited growth
and its effect on crystallization
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The dynamic behavior of the concentration field in crystallization is investigated by considering the coupling
of the bulk concentration field and interfacial kinetics. It is shown that the concentration field may become
unstable for perturbations with certain wavelength. When instability occurs, the physical environment in front
of the growing interface will fluctuate and the interfacial growth mode will be affected accordingly. We
suggest that our analysis can be used to interpret some spatial-temporal instabilities observed in crystallization.
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PACS number~s!: 81.10.Aj, 68.10.Jy, 47.20.Hw, 82.40.Bj
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One of the intriguing aspects of interfacial growth is th
in some cases the growth environment may become uns
spontaneously@1–9#. The instability was usually attribute
to either impurity effects in interfacial kinetics@8,9#, or two-
dimensional~2D! nucleation and spreading of 2D island
@10,11#, or some special nonlinear boundary conditions@1,2#.
The physical origin of the instability, although it varies fo
different systems, is normally believed to associate with
competition of interfacial kinetics and chemical transpor
tion, and nonlinear boundary conditions are sometimes
quired. The perturbation method is usually introduced
this type of studies. For example, Coriell and Sekerka@8#
proposed an oscillatory instability related to a ‘‘solu
pump’’ mechanism, according to which the local changes
segregation coefficientk originated from the periodic
changes in the interfacial velocityv can occur out of phase
with local interface position. This leads to lateral inhomog
neity of concentration on a length scale large enough that
resulting instabilities will not be suppressed by capillari
Moreover, the effect of anisotropic kinetics on morpholo
cal stability of a pure material growing at constant veloc
into a supercooled melt was investigated by Chernov, Co
and Murray@12#. Although great efforts have been devot
to this type of problem, however, it seems that many qu
tions remain open. One of these is whether the oscillat
behavior of the concentration field could be an intrinsic pro
erty of the diffusion-limited growth. In this paper, startin
from conventional diffusion equation and boundary con
tions@13#, we show that both the bulk solute concentration
the interface and the interfacial concentration of adsorp
molecules may become unstable for perturbations with
tain wavelength, which might be the origin of some spati
temporal oscillations in the interfacial growth.

Following Gilmer, Ghez, and Cabrera@13#, crystal growth
from an aqueous solution can be modeled as the follow
~i! solute molecules diffuse through supersaturated volum
growing interface,~ii ! solute molecules exchange betwe
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the volume near the surface and the close-packed terr
where molecules are adsorbed, and~iii ! adsorbed molecules
diffuse on the terraces in between steps and incorporate
kink sites on the steps. In this model direct incorporation
solute molecules by volume diffusion is not considered. W
suppose that the adsorption molecules on the interface h
an average lifetimet, beyond which the molecules will de
sorb from the interface and go back to the volume.

A two-dimensional model is taken, where the interfa
grows in a 1y direction. The volume concentration fiel
C(x,y,t) and the interfacial adsorption concentration fie
ns(x,t) are considered. The volume concentration fie
C(x,y,t) satisfies

]C~x,y,t !

]t
5DvS ]2C~x,y,t !

]x2
1

]2C~x,y,t !

]y2 D , ~1!

whereDv is the volume diffusion coefficient. In the vicinity
of growing interface (yP« and «˜0) the concentration
fields obey the following relation:

Dv

]C~x,y,t !

]y U
yP«

5
Dv

L
C~x,y,t !U

yP«

2
ns~x,t !

t
, ~2!

where L is a phenomenological coefficient describing t
kinetics of particle exchange between the volume and
adsorbed layer@13#. At the crystal surface, mass conserv
tion requires

j v5¹• j s1
dns~x,t !

dt
, ~3!

where the mass flux from volume j v5
2Dv]C(x,y,t)/]yuyP« and the surface mass fluxj s5
2Ds¹ns , Ds is the surface diffusion coefficient. BothDv
andDs are taken as constant. The growth rate of the cry
surface depends on the diffusion flux of adsorption m
ecules towards the steps, while this flux is determined
local adsorption concentration gradient on the step sites.
1901 © 1999 The American Physical Society
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The analytical solutions of the coupled equations~1! and~3! with boundary conditions discussed in Ref.@13# are not easy
to get, although the stationary solutions are known. The stationary solutions of these two equations can be obtained

C~x,0!5~11s!C02
qbl

lD vt F d

l
12(

k51

` tanhS 2pk

l
d D cosS 2pkx

l D
2pkl

l F S 2pkl

l D 2

1b
2pkl

l
tanhS 2pkd

l D11GG ,

ns~x!5~11s!
DvtC0

L
2

ql

lL F 11
d

l
b12(

k51

` F2pkl

l
1b tanhS 2pk
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d D GcosS 2pkx

l D
2pkl

l F S 2pkl

l D 2

1b
2pkl
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tanhS 2pkd
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wheres defines the supersaturation,C0 is the equilibrium
concentration at the temperature of crystal growth,b is the
interstep distance,l represents the thickness of the bounda
layer,d is the thickness of the unstirred boundary layer,l is
the mean diffusion distance, which obeysl25Dst, andLs
is a coefficient describing the kinetics of particle exchan
between the step and the adsorbed layer. Detail deduc
has been given in Ref.@13#. Even so, we are able to surve
the stability ofC(x,y,t) and ns(x,t). From Eqs.~1!–~3!, a
coupled equation of the adsorption concentration field
the volume concentration field in the vicinity of growin
interface is derived:

dns~x,t !

dt
5

Dv

L
C~x,y,t !U

yP«

2
ns~x,t !

t
1Ds

]2ns~x,t !

]x2
.

~4!

We are particularly interested in the stability ofC(x,y,t)uyP«

and ns(x,t), because they influence the interfacial grow
significantly. The second order derivative of volume conc
tration near the interface can be derived from Eq.~2! as

Dv

]2C~x,y,t !

]y2 U
yP«

5
]

]y S Dv

]C~x,y,t !

]y D U
yP«

5
Dv

L

]C~x,y,t !

]y U
yP«

5
1

L S Dv

L
C~x,y,t !U

yP«

2
ns~x,t !

t D .

~5!

Substituting Eq.~5! into Eq.~1!, an equation of volume con
centration in the vicinity of growing interface is obtained:
y

e
on

d

-

]C~x,y,t !

]t U
yP«

5Dv

]2C~x,y,t !

]x2 U
yP«

1
Dv

L2
C~x,y,t !U

yP«

2
ns~x,t !

Lt
. ~6!

Based on Eqs.~4! and ~6!, a linear stability analysis is ap
plied. We introduce plane-wave perturbations to the conc
tration fields at the growing interface. The perturbed conc
tration fields are assumed to have the form of

ns
p~x,t !5ns~x,t !1ñse

vte2 ikx,

~7!

Cp~x,y,t !uyP«5C~x,y,t !uyP«1C̃evte2 ikx.

Taking the perturbed solutions~7! into Eqs. ~4! and ~6!, a
dispersion equation is achieved,

v21F1

t
2

Dv

L2
1k2~Dv1Ds!Gv1S Dsk

21
1

t D S Dvk22
Dv

L2D
1

Dv

L2t
50. ~8!

The dynamic behavior of interfacial concentration fields d
pends on the property ofv. When the wave vectork is in the
range

ADv

L2
2A1

t

ADv2Ds

,uku,

ADv

L2
1A1

t

ADv2Ds

, ~9!
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v is complex and oscillatory behavior is expected. Howev
whether such oscillatory instability is eventually observa
depends on the sign of the real part ofv, v r . If v r is always
negative, instability decays exponentially and the pertur
tion eventually vanishes. In this case the concentration fi
is stabilized. Ifv r becomes positive beyond a certaink, per-
turbation amplitude of the interfacial concentration field a
proaches infinite as time goes on and thus instability occ
The turning point of these two scenarios is a marginal s
with v r50, which corresponds to a sustained periodic os
lation of the interfacial concentration field. The wave vec
of this marginal state is

k05
ADv

L2
2

1

t

Dv1Ds
. ~10!

We plot in Fig. 1 the dispersion relationv(k). In the shaded
region,k satisfies Eq.~9! andv has an imaginary partv i and
a real partv r . While in the other regions, two real solution
exist, which are denoted asv1 and v2, respectively. The
dashed line marksk0. Figure 1 suggests that the growth sy
tem will selectively respond to the perturbations with diffe
ent wavelength. When the wave vector of perturbation
greater thank0, the perturbation is damped and the conce
tration fields are stabilized; when the wave vector of pert
bation is smaller thank0, however, the perturbation ampl
tudes of concentration fields may either fluctuate in
complicated way, or increase exponentially. Consequen
instability is expected in the crystal growth. In this cas
nevertheless, the detail dynamic behavior of the unsta
concentration fields is beyond the capability of the pertur
tion method. Instead of studying the complicated unsta
scenario, we focus on the marginal stable oscillatory s
with v r50. Meanwhile the temporal oscillation perio

FIG. 1. The dispersion relation to show the dependence ofv on
the wave vectork. In the shaded regionv is complex, where the
real and the imaginary parts are denoted asv r andv i , respectively.
Beyond the shaded region,v has two real solutions marked asv1

and v2. The dashed line marks the marginal state withv r50,
wherek5k0. The parameters to make the plot areDv55.531026

cm2/s, Ds51.031029 cm2/s, t50.25 s,L51.031023 cm.
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Tt(52p/v i), is a function ofDv , Ds , L, and t. Figure
2~a! shows the relation ofTt and the volume diffusion coef
ficient Dv . The oscillation period decreases asDv increases.
In order to observe the oscillation of the interfacial conce
tration field, the volume diffusion coefficient should be
proper value, so that the oscillation period is not too long
too short. Figure 2~b! illustrates the temporal oscillation pe
riod Tt as a function ofL. Tt increases dramatically whenL
is larger than a certain value. It is known thatL relates to the
activation energy barrier for surface adsorption,DUad , as
L}exp(DUad/kT) @13#, wherek is Boltzmann constant andT
is temperature. A largerL corresponds to a higherDUad .
For sufficiently high energy barrierDUad the chance of sur-
face adsorption drops significantly and the effective sup
flux from volume decreases. As a result, the period of te
poral oscillation increases. In Fig. 3~a!, we plot v r(k) for
different volume diffusion coefficientDv . When Dv be-
comes less than a certain value,v r is always negative and
the concentration field is stabilized. Figure 3~a! suggests that
instability takes place more easily for long wavelength p
turbations when the volume diffusion coefficient is highe
which is consistent with previous studies@12#. Figure 3~b!
demonstratesv r(k) at different surface diffusion coeffi
cients.

FIG. 2. ~a! The relation of the temporal oscillation periodTt and
the volume diffusion coefficientDv . The parameters are selected
Ds51.031029 cm2/s, t50.25 s, andL51.031023cm. ~b! The
temporal oscillation periodTt as a function ofL. The parameters to
make the plot areDv55.531026 cm2/s, Ds51.031029 cm2/s,
andt50.25 s.
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It follows that v r(k) becomes negative for sufficiently larg
Ds . The negativev r(k) means that the perturbation to th
concentration field will finally be damped. So Fig. 3~b! indi-
cates that faster surface diffusion stabilizes the interfa
concentration field. In this case, the chance for the adsorp
molecules to reach kink sites on the step becomes m
higher. Once the molecules incorporate into the kink s
they are considered as a part of the crystal. Therefore,
interfacial growth, which acts as the drain of adsorption m
ecules, becomes faster for higherDs . When the drain of
adsorption molecules turns strong enough, the interfa
concentration field will no longer oscillate.

We suggest that the instability of the concentration field
growing interface originates from the competition of nutrie
transport and interfacial kinetics. With a fixed volume su
ply, adsorption concentration will not be accumulated wh
the lifetime of adsorptiont drops ~i.e., the adsorbed mol
ecules jump back to the volume easily!, or the surface diffu-
sivity becomes very high. To some extent, this situation
similar to that of the Lotka-Volterra model~or, predator-prey

FIG. 3. ~a! The curve ofv r(k) for different volume diffusion
coefficientsDv in the region wherev(k) has a complex value. I
can be seen that for sufficiently lowDv , v r is always negative and
the concentration field is stabilized. The parameters to make
plot areDs51.031029 cm2/s, t50.25 s, andL51.031023 cm.
~b! The plot to show the dependence ofv r(k) on surface diffusion
coefficientDs . v r(k) is always negative when the surface diffusio
coefficient is sufficiently high~meanwhile,Ds becomes comparabl
to Dv). This means that for a specific growth system, faster surf
diffusion stabilizes the interfacial concentration field. The para
eters to make this plot areDv55.031026 cm2/s, t50.25 s, and
L51.031023 cm.
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model! in ecosystem@14#. In a solution growth system, it is
generally accepted that the volume diffusion coefficientDv
is much larger than that of surface diffusion,Ds @15#. Figure
3~b! implies that a large difference betweenDv and Ds is
required to observe oscillatory instability of the interfac
concentration field. Due to the fact thatDv is significantly
larger thanDs for many solution growth systems, in thes
systems the dynamic behavior of the concentration field
essentially determined by the volume diffusion, the inter
cial adsorption, and desorption.

The unstable interfacial concentration field and its eff
on crystallization have been observed in several growth s
tems. In electrocrystallization, periodic oscillation of th
concentration field was visualized by differential interferen
contrast microscopy and was related to the sidebranchin
dendrites@4#. For crystal growth from a thin aqueous sol
tion film with a free surface, periodic change of surfac
tension gradient originated from the concentration osci
tion, together with a wetting effect of aqueous solution fi
on the substrate, finally leads to a periodic variation of int
facial growth rate @3#. Furthermore, unstable interfacia
growth was observed by Vekilov, Alexander, and Rose
berger@5# in the crystallization of lysozyme, and by Tsuka
moto et al. @16# in the growth of Ba(NO3)2 from a
convection-free environment. If the instability of the interf
cial concentration field takes place near the critical value
kinetic roughening transition, one would expect an altern
ing change of interfacial growth mode between a faceted
and a rough one. Our recent studies on the surface morp
ogy of the aggregate of NH4Cl crystallites@6# seems to sup-
port this speculation.

As we reported previously@6#, crystallites of NH4Cl in an
agarose gel growth system can form a fractal-like aggreg
on the glass substrate. Viewed under optical microscope,
surface of crystallites is completely rough in the early sta
of growth when the initial concentration of NH4Cl is above
10%. As crystal growth proceeds, faceting takes place loc
over the rough, rounded surface of the aggregates, whic
characterized by the bunching of steps and the generatio
2D islands. In between two regions of faceted growth,
surface of crystallites remains rough. In this way an altern
ing change of faceted growth and rough growth takes pla
It is true that the spatial distribution of the regions of rou
and faceted growth is not exactly periodic. However, flu
tuation of the spatial period is not significant. Therefore,
are still able to define an average spatial period of the rou
ening transitions. By changing agarose concentration in p
paring the gel medium, the effective volume diffusion coe
ficient is modified. Although we do not know th
quantitative relation of the volume diffusion coefficient
NH4Cl with respect to agarose concentration~or, the density
of the gel medium!, it is reasonable to assume that the effe
tive volume diffusion coefficient decreases when the agar
concentration is increased. We measured the average sp
period of the alternating roughening transitions over the s
face of aggregate as a function of the concentration of a
ose. It was found that the spatial period is shortened w
the gel concentration is decreased@6#. This experimental ob-
servation can be explained by our model. Suppose that
have a moving frame of coordinates fixed on the growing
of an aggregate branch. In addition, local interfacial conc
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tration is initially higher than the critical concentration for
kinetic roughening transition. Meanwhile the surface of cr
tallites is roughened. When instability occurs, the local c
centration field in front of the growing interface fluctuat
and it may become lower than the critical concentration
kinetic roughening. Once this occurs, the nucleation rate
creases considerably and the growing interface changes
faceted one. When the aggregate branch moves forward
soon as the local concentration in front of the growing int
face fluctuates higher than the critical value for a kine
roughening transition, rough crystal growth reappears. In
way, the temporal fluctuation of interfacial concentrati
field in the moving frame of coordinates results in the spa
alternating roughening transitions over the surface of ag
gate branches. Figure 2~a! indicates that the temporal osci
lation period is shortened when the volume diffusion coe
cient is increased. In other words, by decreasing the aga
concentration, the temporal oscillation period is shorten
Suppose the tip growth rate remains a constant during
roughening transition process; it follows that the spatial
riod of the roughening transition should decrease at lo
agarose concentration, which is consistent with our exp
mental observation@6#.

It should be mentioned that in many previous studi
oscillatory spatial and temporal processes were attribute
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the chemical impurities on the growing interface@8,9,17# or
the asymmetry in attachment kinetics on the crystal surf
@18,19#. It was also argued that the unsteady growth may
due to a highly nonlinear response of the system that res
in a mixed control regime from the coupling of solute bu
transport with nonlinear interfacial kinetics@5#. Indeed these
factors can be responsible for the unstable growth; howe
our results suggest that the instability of interfacial conc
tration fields and interfacial growth could be an intrinsic b
havior of diffusion-limited growth itself. Furthermore, osci
latory dynamic behavior is not restricted to crystallizati
only. As a matter of fact, many spatiotemporal oscillatio
have been observed in reaction-limited interfacial proces
and in catalysis systems@20,21#. Due to the generality of the
equations presented in this paper, we expect that our ana
should also be applicable to these systems.
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