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Abstract: We present theoretically the transport of plasmonic waves in doped graphene tube, 
which is made by rolling planar graphene sheet into a cylinder and periodic doping is applied 
on it. It is shown that periodic modulation of the Fermi level along the tube can open gaps in 
the dispersion relations of graphene plasmons and eventually create plasmonic band 
structures. The propagation of graphene plasmons is forbidden within the bandgaps; while 
within the band, the plasmonic waves present axially-extended field distributions and 
propagate along the tubes, yet well confined around the curved graphene surface. 
Furthermore, the bandgaps, propagation constants and propagation lengths of the modes in 
plasmonic band structures are significantly tuned by varying the Fermi level of graphene, 
which provides active controls over the plasmonic waves. Our proposed structures here may 
provide an approach to dynamically control the plasmonic waves in graphene-based 
subwavelength waveguides. 
© 2017 Optical Society of America 
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1. Introduction 

Graphene is a gapless semiconductor constructed by arranging carbon atoms in a honeycomb 
lattice [1,2]. Recently, this atomic monolayer of carbon has been proven to be a promising 
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photonic and plasmonic material because it exhibits unprecedentedly strong light-matter 
interactions and tight electromagnetic field confinements [3–14]. For example, graphene 
sheets and ribbons have been proposed as plasmonic waveguides at infrared and terahertz 
frequencies [15–26]. The dispersion relation of graphene plasmons depends not only on the 
physical structure but also on the Fermi level, i.e., they can be dynamically modified through-
electrostatic gating, thereby providing a tunable platform for plasmonic applications. Very 
recently, graphene tubes, or similarly graphene-coated nanowires, have been theoretically 
proposed as single-mode plasmonic waveguides in the terahertz frequencies [27–33]. The 
dispersion relations of the plasmons in a uniformly doped graphene tube are continuous 
across certain frequency ranges: the fundamental mode has a dispersion curve that is 
continuous in the whole spectrum, and the high-order modes exhibit continuous dispersion 
curves above their cut-off frequencies [27,28]. Variation of the Fermi level of graphene 
merely adjusts the mode propagation constants, wave propagation can still happen in these 
systems. This means that uniformly doped graphene tubes have no selectivity over 
frequencies: the tube will let all the electromagnetic waves pass regardless of the frequency. 
However, especially in nanoelectric and nanophotonic applications, the emerging of energy 
bandgaps is the key to enable new functionalities. Such band gaps can be opened by coherent 
superposition of the reflected waves. Typical examples are photonic crystals, which were 
initially proposed to inhibit spontaneous emissions in atoms [34]. To create band gaps, 
periodic variation of the parameters is always required [35]. In the case of graphene tube, 
such variation can be achieved by periodic doping along the propagation direction; by doing 
this, plasmonic band structures may occur, which can be dynamically tuned by the Fermi 
level. 

In this work, we propose a graphene tube with periodic variation of the Fermi level along 
the propagation direction. The dispersion relations of such tubes are found discontinuous, i.e., 
bandgaps are opened. The plasmonic waves present standing-wave-like axial field 
distributions and propagate along the tubes only within the band, yet confined around curved 
graphene surface. Plasmonic bands with different azimuthal indexes are uncoupled, and cut-
off frequencies exist for high-order modes. Taking advantage of the tunability of graphene, 
the bandgaps, the propagation constants and the propagation lengths of the plasmonic modes 
in such graphene tube can be significantly tuned by varying the Fermi level of those graphene 
building blocks, which provides active controls over plasmonic waves. 

2. Plasmonic band structures in doped graphene tubes 

We first consider the propagation of graphene plasmons in doped graphene tube, which is 
made by rolling planar graphene sheet into a cylinder and periodic doping is applied on it. It 
is known that plasmonic waves in graphene are supported by its in-plane conductivity. Here 
we use highly n-doped graphene tube to carry the plasmonic waves at low-frequency terahertz 
(THz) regime, thus only intraband transition is contributed to the graphene conductivity, 
which satisfies 2 2 1( ) / [ ( )]Fie E iσ ω π ω τ −= + . FE is the Fermi level and τ is the relaxation 

time [36,37]. In calculations, the relaxation energy 2 / 0.1Eτ π τ= =  meV is chosen for 

taking account of the losses. For simplicity, we assume that the curvature of the tube has no 
effects on the graphene conductivity, and the tube is in vacuum. Due to the fact that graphene 
is a one-atom-thick material, the boundary conditions used for deriving the plasmonic band 
structures are: (1) the tangential electric fields are continuous across the graphene layer, and 
(2) the discontinuity of the tangential magnetic fields equals the surface current density in 
graphene. These two boundary conditions have been widely used in the research of graphene 
plasmons [38,39]. In this work, we consider the case where the graphene tube consists of a 
series of building blocks, and each building block contains two sections with specific Fermi 
level EFi (i = 1, 2) and length Pi (i = 1, 2). The periodicity of the conductivity along the tube 
can be taken into account by adding its Fourier components: ( ) exp( 2 / )

n
z i n z pnσ σ π= , 
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where p = P1 + P2 denotes the period. 
/ 2

/ 2
[ ( ) exp(- 2 / )] /

p

p
dz z i n z p pnσ σ π

−
=   and n is an 

integer. For this reason, the electromagnetic fields inside and outside the tube must be 
decomposed using the same Fourier bases. Thus, the z components of the electric/magnetic 
fields can be written as: 

 ,/ exp( ) ( ) exp( 2 / ) exp( ).z z z n m r nn
E H ik z a k r i nz p imπ θ=  B  (1) 

where Bm denotes the Bessel function. For inside and outside the tube, we respectively have 
Bm = Im and Bm = Km, where Im and Km are respectively m-order modified Bessel functions of 

the first and second kind. kz is the propagation constant, 2 2
, , 0r n z nk k k= − , , 2 /z n zk k n pπ= + , 

and k0 is the wavenumber in vacuum. an is a constant which describes the amplitude of the n-
th order Fourier component, and R is the radius of the tube. m in exp(imθ) is the azimuthal 
index, which in fact describes the orbital angular momentum of the plasmonic mode [40]. 
Other components of the fields can be derived from Eq. (1). The plasmonic band structures in 
the graphene tube are determined by the boundary conditions. For a certain azimuthal index 
m, a uniform graphene tube supports only one plasmonic mode under the light line [27,28]. 
This fact still holds under periodic doping conditions, since the periodicity is only along the 
tube which will not mix the plasmonic modes with different orbital angular momentums or 
azimuthal indexes. After tedious calculations, one can derive a determinant that contains 
infinite numbers of linear equations: 
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where 2 2
0 0 ,/ ( )n z nik k kα = − − , 2 2

0/ ( )n zn znmk R k kβ = − − , ' 0 '

1

2
n n n nZσ σ− −= , Z0 is the vacuum 

impedance, and δn,n’ is Kronecker delta which is zero if n = n’. Here, Km is short for Km 
(kr,nR), and Im is short for Im (kr,nR). Every element in Eq. (2) represents a (2N + 1) × (2N + 1) 
matrix, where N is the largest order of Fourier component we have considered. Actually in 
our following calculations, good accuracy can be achieved if we use more than 20 Fourier 
harmonics. Different Fourier components are coupled by the periodicity. The plasmonic band 
structure under specific azimuthal index can be derived by setting this determinant to zero. 

Figure 1(a) shows the schematic of a uniform graphene tube. The propagation direction is 
along the z axis, and the cross section of the tube is in the x-y plane. The dispersion relation of 
the plasmonic mode with m = 0 is shown in Fig. 1(b); clearly, it is continuous across the 
whole spectrum. In the inset of Fig. 1(b), we show the transmission spectrum of THz waves 
propagating for the distance of 360 μm along the tube, which are calculated by using 
commercial software (FDTD Solutions, Lumerical). It is obvious that transmission is as high 

as 90% in a rather wide frequency range. The normalized 
2

zE  at the point indicated by the 

black arrow in Fig. 1(b) is depicted in Fig. 1(c), which shows that the fields expand uniformly 
along the tube. 

However, under periodic doping condition, situations are totally different. Figure 1(d) 
shows the schematic of a periodic graphene tube, where two different sections are 
respectively denoted with red and blue colors. The corresponding dispersion relation of this 
tube is plotted in Fig. 1(e); only half of the first Brillouin zone (kz > 0) is presented. Due to 
the periodicity, the dispersion relation (black curve) is folded into the first Brillouin zone, 
causing multiple intersections with the light line (red line). At the edge and center of the 
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Brillouin zone, bandgaps are opened. In the gaps, the propagation of the plasmonic waves is 
forbidden. Besides, the inset of Fig. 1(e) shows the transmission spectrum of the THz waves 
propagating through 12 periods (total distance is 360μm along the tube) of such structure. The 
transmission drops below ~10% within the gap, while still remains approximately 90% 

outside the gap. The corresponding normalized 
2

zE  at the point indicated by the black arrow 

in Fig. 1(e) is depicted in Fig. 1(f), showing periodic variation of the intensity along the tube. 
Actually in such a periodically doped graphene tube, periodic modulation provides additional 
reciprocal vector to compensate the momentum difference between the plasmons and free-
space waves. As a consequence, the Bloch mode are excited by illuminating THz waves 
directly on the periodic structures. Thus, under periodic doping conditions, graphene tube 
indeed possesses plasmonic band structure, and the fields also exhibit periodicity in intensity 
during the propagation. 

 

Fig. 1. (a) Schematic of a uniformly electron-doped graphene tube. (b) Dispersion relation of 
the uniform graphene tube (denoted as G tube), where EF = 0.6 eV, and R = 1 μm. The inset 
shows the transmission spectrum of THz waves propagating for the 360μm-long distance along 

the tube. (c) The normalized 
2

zE  at the point of the dispersion relation indicated by the 

black arrow in (b). The tube is indicated by white dashed lines. (d) Schematic of a periodically 
doped graphene tube. The two sections are denoted by different colors. (e) Band structure of 
the periodic graphene tube, where P1 = P2 = 15 μm, R = 1 μm, EF1 = 0.7 eV, EF2 = 0.5 eV, and 
the azimuthal index is zero (m = 0). The inset shows the transmission spectrum of THz waves 
propagating for 12 periods (the total distance is 360 μm) along the tube. (f) The normalized 

2

zE  at the point of the band structure indicated by the black arrow in (e). The tube is 

denoted by white dashed lines. 
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Plasmonic band structures of the periodically doped graphene tubes can be classified 
according to the azimuthal index. Here we set the parameters of the tube as P1 = P2 = 2 μm, R 
= 1 μm, EF1 = 0.7 eV, and EF2 = 0.5 eV. For m = 0, the dispersion curve starts from zero 
frequency and exhibits gaps at the edge and center of the Brillouin zone, as shown by the 
black curves in Fig. 2(a). The dispersion relation of this plasmonic mode has multiple 
intersections with the light line (the red line in Fig. 2(a)). Under the light line, the 
electromagnetic fields are evanescent; thus, they are strictly confined near the tube and guided 
along the z axis. However, above the light line, partial electromagnetic fields may be scattered 
into the far-field areas; the plasmonic waves would propagate along the tube, while 

simultaneously being scattered away. The normalized 
2

zE in the x-z plane corresponding to 

the lower edge of the first band gap (indicated by the black arrow in Fig. 2(a)) is plotted in 
Fig. 2(d). At the edge of the band gap, the field intensity profile looks like a standing-wave, 

showing no sign of propagation. The normalized 
2

zE  in the x-y plane (see Fig. 2(g)) remains 

constant around the tube, corresponding to the case of m = 0. 

 

Fig. 2. Band structures of the periodically doped graphene tubes with (a) m = 0, (b) m = 1 and 
(c) m = 2. The parameters we chose are: P1 = P2 = 2 μm, R = 1 μm, EF1 = 0.7 eV, and EF2 = 0.5 

eV. (d), (e) and (f) are the normalized 
2

zE  at the x-z plane at the edges of the first band gaps 
indicated by the black arrows in (a), (b) and (c), respectively. The tubes are indicated by white 

dashed lines. (g), (h) and (i) are the corresponding normalized 
2

zE  at the x-y plane, showing 
uniform, dipole-like and quadruple-like profiles around the tube, respectively. 
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The plasmonic band structure with m = 1 is plotted with black curves in Fig. 2(b). 
Compared with the case of m = 0, the dispersion relation has a cutoff frequency near 53ω =  

THz. The normalized 
2

zE in the x-z plane corresponding to the lower edge of the first band 

gap (indicated by the black arrow in Fig. 2(b)) is shown in Fig. 2(e). Again, there is no sign of 
propagation. The fields are more tightly confined near the graphene layer. In the x-y plane the 

normalized 
2

zE has a dipole-like profile around the tube (as shown in Fig. 2(h)), 

corresponding to the case of m = 1. 
For the case of m = 2, the plasmonic dispersion also has a cut-off frequency near 
86ω = THz, which is much higher than that of the m = 1 case. The field distribution in the x-z 

plane corresponding to the lower edge of the first band gap (indicated by the black arrow in 
Fig. 2(c)) is depicted in Fig. 2(f). Also, the fields are extremely confined near the graphene 
layer and have standing wave-like intensity distributions along the z axis. Due to the fact that 

Ez has a factor of exp(imθ), the profile of 
2

zE  presents the dipole-like pattern for m = 1 (as 

shown in Fig. 2(h)) and a quadruple-like pattern for m = 2 (as shown in Fig. 2(i)). Despite 
their different azimuthal indexes, both dispersion relations exhibit bandgaps, within which no 
electromagnetic modes are found. The plasmonic waves within the bands can propagate along 
the tube with periodically varying field intensities. At the edge of the bandgaps, the plasmonic 
waves have standing wave-like profiles, indicating the stopping of tis propagation. 

Selectively and individually gating graphene becomes a challenging problem if we 
concern real-world controllable fabrication. Fortunately, some techniques such as split gating 
method [41], patternable chemical doping [42], or even position-depend plamon-induced 
doping [43], have recently developed for nanofabrication. In our case, it is possible to use 
split gating method to achieve periodically-doped graphene tube, where electrical doping is 
applied individually by two sets of split gates. The doping levels of those two sets of building 
blocks are dependent of the gate pattern along the graphene tube. By changing the gate 
voltages individually, it is possible to realize a tunable doped graphene tube as we propose 
here. 

3. Tunability of the plasmonic bandgaps and propagation lengths 

 

Fig. 3. (a) kz of the plasmonic modes plotted as functions of EF1. The frequency is fixed at 20 
THz, P1 = P2 = 2 μm, R = 1 μm, and EF2 = 0.5 eV. Blue, black, and red curves respectively 
indicate kz of the modes with m = 0, m = 1 and m = 2. (b) The upper panel shows the central 
angular frequency ω of the band gaps as functions of EF1. Only the first and the second gaps 
are plotted, denoted by the first number in the legends. Modes with m = 0, m = 1 and m = 2 
are respectively denoted by blue, black, and red curves. The lower panel shows the 
corresponding widths of the band gaps as functions of EF1. At EF1 = 0.5 eV, all gaps are closed. 

The plasmonic band structures highly depend on the Fermi level and the length of each 
section in the building block. In the followings, we investigate the tunability of the bandgaps 
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and propagation lengths. For convenience, only the Fermi level of the first section (EF1) is 
varied; other parameters are fixed. For a certain frequency (like in our case is 20 THz), the 
propagation constant kz depends on EF1. Figure 3(a) shows the variations of the propagation 
constants of the plasmonic modes as EF1 increases from 0.3 eV to 1 eV, while keeping EF2 
fixed at 0.5 eV. Other parameters are P1 = P2 = 2 μm, and R = 1 μm. Blue, black, and red 
curves denote the propagation constants for the m = 0, m = 1 and m = 2 modes, respectively. 
In some ranges, the propagation constants of the plasmonic modes reach the edge or center of 
the Brillouin zone, opening gaps in the dispersion curves. Modes with different azimuthal 
indexes show band gaps in different ranges of EF1 ; thus, it is possible to selectively forbid the 
propagation of the plasmonic mode with a specific azimuthal index by carefully choosing the 
Fermi level. In Fig. 3(b), we show variations of the central frequencies (upper panel) and 
widths (lower panel) of the first and second band gaps as EF1 increases from 0.1 eV to 1 eV. 
The solid and dashed curves in the upper panel respectively indicate the central frequencies 
for the first and second band gaps. Blue, black, and red colors denote the plasmonic modes 
with m = 0, m = 1 and m = 2, respectively. As we can see from the upper panel, the central 
frequencies gently increase as the Fermi level moves up. The variations of the widths of the 
band gaps are shown in the lower panel of Fig. 3(b). The first band gaps seem wider than the 
second ones for all cases. This may be caused by the absence of scattering near the first band 
gap, since it is completely under the light line. All gaps are closed when EF1 = 0.5 eV. 

In real-world applications, propagation length is another important factor of plasmonic 
waveguides. In the case of periodically doped graphene tube, the scattering of 
electromagnetic waves into the far-field is completely inhibited under the light line. Thus, the 
remaining limitations are ohmic losses and plasmonic band gaps. We have investigated the 
propagation length of the plasmonic mode in Fig. 1(e). The propagation length (denoted as L, 
red curves) and the wavelength-normalized propagation length (denoted as L/λ, black curves) 
are plotted as functions of the frequency in Fig. 4(a). The wavelength becomes infinitely large 
in the low-frequency limit, while the propagation length is finite; thus, the wavelength-
normalized propagation length must tend to zero as the frequency goes to zero. However, it 
can reach as large as 30 near f = 1.8 THz. More interestingly, the wavelength-normalized 
propagation length suddenly drops as the frequency further increases. This sudden drop is due 
to the fact that the corresponding frequency is approaching the first band gap. 

 

Fig. 4. (a) The propagation length, L, and wavelength normalized propagation length, L/λ, of 
the plasmonic mode under the first band gap in Fig. 1(e) as functions of the frequency. The 
remaining parameters are P1 = P2 = 15 μm, R = 1 μm, EF1 = 0.7 eV, EF2 = 0.5 eV, and m = 0. 
(b) Normalized propagation lengths as functions of EF1 at two different frequencies. Other 
parameters are denoted therein. 

The propagation length also depends on the Fermi level as we expected. Similarly, we 
investigate variations of the normalized propagation lengths at two frequencies as EF1 is 
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increased from 0.1 eV to 1 eV, while other parameters are fixed, see Fig. 4(b). For 1 THz (red 
curve in Fig. 4(b)), the propagation length tends to zero as EF1 approaches 0.1 eV. This is due 
to the fact that the frequency of 1 THz in this case is very close to the band gap. When EF1 = 
1.0 eV, the propagation length of the 1 THz plasmonic wave can reach over 25 times the 
excitation wavelength. For 0.5 THz (black curve in Fig. 4(b)), since the band gap is far away 
from this frequency in such range of EF1, the propagation length of the plasmonic wave varies 
gently due to the ohmic loss of graphene. 

4. Conclusions 

In this work, we have proposed a doped graphene tube and demonstrated that periodic doping 
along a graphene tube can create plasmonic band structures. Within the bandgaps, the 
propagation of plasmonic waves is prohibited; while within the band, the plasmonic waves 
propagate along the tubes, yet confined around curved graphene surface. For the plasmonic 
modes with nonzero azimuthal index, cutoff frequency exists and the electromagnetic fields 
are extremely confined around the tube. The bandgaps, propagation constants and 
propagation lengths of the modes in plasmonic band structures can be significantly tuned by 
varying the Fermi level of graphene, which makes it possible to active control the propagation 
of plasmonic waves. The investigations may provide a way to dynamically engineer 
plasmonic band structures and efficiently control the plasmonic waves in graphene-based 
subwavelength waveguides. 
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