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ABSTRACT: Flexible optoelectronic devices attract considerable
attention due to their prominent role in creating novel wearable
apparatus for bionics, robotics, health care, and so forth. Although bulk
single-crystalline perovskite-based materials are well-recognized for the
high photoelectric conversion efficiency than the polycrystalline ones,
their stiff and brittle nature unfortunately prohibits their application for
flexible devices. Here, we introduce ultrathin single-crystalline
perovskite film as the active layer and demonstrate a high-performance
flexible photodetector with prevailing bending reliability. With a much-
reduced thickness of 20 nm, the photodetector made of this ultrathin
film can achieve a significantly increased responsivity as S600A/W, 2
orders of magnitude higher than that of recently reported flexible
perovskite photodetectors. The demonstrated 0.2 MHz 3 dB
bandwidth further paves the way for high-speed photodetection.
Notably, all its optoelectronic characteristics resume after being bent over thousands of times. These results manifest the great
potential of single-crystalline perovskite ultrathin films for developing wearable and flexible optoelectronic devices.

KEYWORDS: Flexible photodetector, single-crystalline perovskite, ultrathin film, hybrid organic—inorganic perovskite

B INTRODUCTION It has been discovered recently’® ™ that the mechanical
properties of a material can be significantly improved when the
dimension is scaled down to the nanometer. Here, we
demonstrate an additional example that a high-performance
flexible photodetector can be realized by using ultrathin single-

The flexible photodetector (PD) is a crucial active component
for wearable devices, foldable displays, and biomedical imaging
systems.'"® It requires photoactive materials with high
photoelectric conversion efficiency and comparable compli-

ance.””'' Among the existing materials, hybrid organic— crystalline perovskite film. We developed a quasi-static solution
inorganic perovskites (HOIPs, the molecular formula of synthesis approach to fabricate single-crystalline perovskite
CH3NH3PbX3 (X = CI’ Br’ I)) emerge as a promising CH3NH3PbBr3 as an active layer 20 nm in thickness on
candidate, largely due to their exceptionally high optical atomically flat mica sheet. The flexible photodetector made of
absorption coeflicient, long electron—hole diffusion length, 20 nm thick single-crystalline perovskite possesses significantly
high carrier mobility, and tunable bandgap.'*~"” Furthermore, enhanced responsivity reaching 5600 A/W, more than 2 orders
HOIPs can be fabricated via the solution process,'* > of magnitude higher than recently reported flexible perovskite
eliminating the need for high processing temperature that photodetectors.39_42 With the demonstrated fast temporal
can potentially be harmful to the flexible substrates. To date, response as 32 Us rise-time and 9.2 Us fau-time) our flexible
HOIP-based flexible photodetectors, flexible image sensors, photodetector features 3 dB bandwidth from DC to 0.2 MHz.
and wearable equipment have been widely reported.” " The reliability of flexible photodetector upon repeated bending
However, in previous reports the perovskite materials are is further validated experimentally. No visible deterioration in

usually polycrystalline. Comparing with single-crystalline
perovskite materials, the polycrystalline ones have larger
charge trap density, shorter carrier lifetime, and lower carrier
mobility.”” > Moreover, grain boundaries in the polycrystal-
line perovskites further compromise their structural stabili? at
elevated ion migration or environmental humidity level.””*
Single-crystalline perovskite can significantly enhance device
performance.**** However, the stiff and brittle nature of
single-crystalline perovskite materials is not readily compatible
with the intended application for flexible photodetector.

photocurrent and on/off switching ratio has been observed
after 1000 bending cycles. In contrast, using the same testing
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Figure 1. Architecture of the flexible photodetector and the characterization of the active layer. (a) Schematic of the device. (b) Schematic
representations of the solution growth including the following four steps: (i) cleaving the mica; (ii) drop the solution between the micas; (iii)
heating and quasi-static solution (QSS) growth; (iv) bending the mica substrate. (c) Photograph of the device. Inset: micrograph of the device, and
the scale bar is 100 ym. (d) False-color SEM image of the device, where light yellow outlines the Au electrodes, and the scale bar is 3 ym. Inset:

tilted SEM image of the edge of the perovskite nanosheet on mica.

protocol, the control samples with increased thickness of 202
and 809 nm show 21% and 49% reduction in photocurrent,
respectively. Thus, the reported solution-based synthesis
process enables low-cost fabrication of a high-performance
flexible photodetector all at room temperature. It can be
readily integrated into a wide range of flexible optoelectronic
devices, such as artificial eyes, portable detectors, flexible
smartphones, and so forth.

Fabrication and Photodetecting Characteristics. A
flexible perovskite photodetector consists of an ultrathin single-
crystalline perovskite CH;NH;PbBr; nanosheet atop of a
flexible polyethylene terephthalate (PET) substrate with an
interlayer of mica, as illustrated in Figure la. To grow the
ultrathin single-crystalline perovskite CH;NH;PbBr; nano-
sheets, we employ two freshly cleaved mica sheets to make a
confined growth space.**~* The growth space is slowly heated
for a quasi-static synthesis process (Figure 1b)***® (Support-
ing Information S1). The mica sheets act as flexible substrates
in the growth of the ultrathin single-crystalline film. The mica
sheet possesses an atomically smooth surface,”” excellent
wettability," and low-chemical activity which promote the
lateral growth and enlarge the crystal sheet.” The trap state
density of the nanosheets is ~2.6 X 10" cm™ based on space-
charge limited current analysis (Supporting Information S2),
which is 5—6 orders of magnitude lower than the polycrystal-
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line perovskite film. 5! Figure 1c,d shows optical and

scanning electron micrographs of a fabricated device based
on a single-crystalline perovskite with a smooth surface free of
grain boundaries (more details in Supporting Information S2).
The channel length of the photodetector is 2.6 um.

Figure 2a shows the current—voltage (I-V) curves of a
device under different illumination conditions. The photo-
current increases as the illumination intensity increases, and
the maximum value reaches 0.34 pA at 1.12 mW/cm? with a
biased voltage of 1.0 V. Figure 2b shows the corresponding
responsivities as a function of illumination intensity. The
responsivity is ~5600 A/W at 0.08 mW/cm?, which is more
than 2 orders of magnitude higher than reported flexible
perovskite photodetectors (for example, see Table 1). It is also
worthwhile to mention that this device possesses remarkable
long-term stability, which can normally work more than 2
weeks after encapsulation by a poly(methyl methacrylate)
coating, as shown in Supporting Information S3.

Specific detectivity (D*) characterizes the ability of the
photodetector to detect weak signals.”> By measuring the noise

- s3 w = VAN _ JAAf
current density spectra,”” we can get D* = NEP T /R

where A is the effective area, Af is the electric bandwidth, NEP
is the noise equivalent power, and i, is the noise current, and R
is the responsivity. For the responsivity at the bias of 1 V and
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Figure 2. Photodetecting characterizations. (a) I-V curves of the
device at different power intensity of a $14 nm laser illumination. (b)
The responsivity varies with the light intensity with a bias of 1 V. (c)
The time domain response of the photocurrent with a bias of 2 V at
the illumination with a 20 kHz modulation. (d) The normalized
response as a function of input signal frequency at the bias of 2 V,
showing the 3 dB bandwidth of the device is about 0.2 MHz.

the illumination intensity of 0.08 mW/cm?, the corresponding
specific detectivity is 6.59 X 10" cm Hz** W' (Jones) as
summarized in Table 1.

To extract the response time of our device, we measure the
transient photocurrents where the device is illuminated by a
frequency-doubled Ti:sapphire laser modulated by an acoustic
optical modulator (see Methods). As shown in Figure 2c, the
photocurrent rises and decays with a modulated laser pulse.
The rise and fall time are 3.2 and 9.2 us, respectively, at a 20
kHz modulation. More measured data at the modulation
frequency ranging from 1 kHz to 1 MHz are given in

Supporting Information S3. Further, Figure 2d illustrates the
normalized responsivity versus the modulation frequency of
the laser, which indicates a 3 dB bandwidth up to 0.2 MHz.
Mechanical Flexibility and Performance Comparison.
We demonstrate the mechanical flexibility of the photodetector
by bending the substrate to various radii as illustrated in the
inset of Figure 3a. Figure 3a shows the I-V curves of the
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Figure 3. Mechanical flexibility and bending stability. (a) I-V curves
of the device as a function of bending radius. Inset: Schematic of the
bending process. (b) I—t curves of the photodetector exposed to
pulsed light illumination (S Hz) before and after the bending at the
bias of 2 V. (c) Photocurrents and dark currents of the flexible
photodetector at different bending radii at a bias of 2 V. Red line
represents the photocurrent, while dark line represents the dark
current. Inset: photographs of corresponding bending states; all of the
scale bars represent 1 cm. All of the currents were measured under
514 nm laser illumination with the power density of 0.2 mW/cm? at
ambient conditions.

Table 1. Comparison of the Performance of the Flexible PD Based on Ultrathin Single-Crystalline MAPbBr; Sheet with That

of Other Flexible Perovskite PDs Reported in the Literatures

rise/deca
device structure material structure D* [Jones] responsivity [A/W] time [msﬁ, device area on/off ratio ref
Au/MAPbBr;/Au ultrathin single crystal ~ 6.59 X 10" 5600@1 V@514 nm 0.003/0.009 36 um*~100 ym* 200 this
~20 nm work
CsPbBr;/CNTS nanosheets dispersions 3l.1@lo V 0.016/0.38 26 pum* 823 SS
ITO/MAPDL,/ITO film 3.49@3 V@365 nm <100/100 0.15 mm? 152 23
Au/MAPbL,/Au microwires 525 X 10" 13.57@-5 V@420 nm 0.08/0.24 3.78 X 10° pm? 25
ITO/MAPDI;/Au nanowires 10" >0.03@0.3 V@500 nm  20.47/13.81 164 mm?* 26
TiO,/Pero-Spiro/Au spiro 3.61 x 10*? 21.5@0.6 V@350 nm <200/200 7.1 mm? 79.1 27
ITO/CsPbBr;/ITO nanosheets dispersions 0.64@10 V@517 nm 0.019/0.024 0.2 mm? >10* 39
Au/MAPbI,/Au film 122 x 108 0418@1 V 1.5 mm? 40
ITO/MAPDL,/ITO film >10" 81@1 V@680 nm 0.23/0.38 0.9 mm? 100 41
MAPbI;/UCns/Au film 0.76 X 10"*  027@2 V@980 nm 52/67 0.27 mm?* >10% 42
Au/MAPbI,/Au nanowire network 1.02 x 10 0.1@10 V@650 nm 0.3/0.4 0.1 mm? 300 54
MAPbI;/CNY wire-shaped 1.76 X 10" 102@0 V@617 nm 393/132 45 56
Au/CsPbBr;/Au microflake 2.776@5 V@275 nm 40/20 57
Au/(PEA),Pbl,/Au membrane 1.62 x 108 98.17@4 V@460 nm 0.064/0.052  0.0454 mm?* 58
AL,0;/ CsPbBr,/TiO, film 1.88 X 108  0.44@0 V@405 nm 0.028/0.27 59
Kapton/PbL,:Pb(SCN),  nanowires 7.3 x 10" 0.62@10 V 0.227/0.215 456 mm?® 60
CsPbBr;/MXene nanosheets 6.4 x 10° 0.045@10 V@450 nm 48/18 80 mm? 23%x10° 61
MAPbIL,/C8BTBT network 2.17 X 10 8.1@3 V@532 nm 7.1/6.5 9.75 X 10° 62
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Figure 4. Photoelectrical responses of flexible PDs based on MAPbBr; sheets with different thickness. (a) I-V curves, (b) I—t curves, (c) the
responsivity and detectivity of an ultrathin (20 nm in thickness) photodetector under 1000 times of bending cycles. (d) I-V curves, (e) I—t curves,
(f) the responsivity and detectivity of a 202 nm thick photodetector under 1000 times of bending cycles. (g) I-V curves, (h) I—t curves, (i) the
responsivity and detectivity of an 809 nm thick photodetector under 1000 times of bending cycles. (j) The normalized photocurrents of three
samples with different thickness as a function of bending radius. (k) The normalized photocurrents of three samples with different thickness as a
function of cyclic counts. (1) The normalized responsivities (the same as normalized detectivities) of three samples with different thickness as a
function of cyclic counts. All of the I-V and I—t curves were measured under a broadband halogen lamp with the power density of 10.5 mW/cm? at
ambient conditions, which are different from the cases in Figure 2a and Figure 3. I—t curves were measured at the bias voltage of 2 V under the
illumination with 2 Hz modulation. All of the responsivity and detectivity were measured under a 514 nm laser with the power density of 0.08 mW/

cm? at ambient conditions.

device as a function of bending radius under 514 nm laser
illumination (0.2 mW/cm?) at ambient conditions. The
flexible photodetector can be bent from a flat state to a radius
of 12 mm and back to a flat state without any significant loss in
responses of photocurrent. Figure 3b plots the photoresponses
versus time characteristics (I—t) of the photodetector exposed
to pulsed laser illumination before and after the bending,
wherein the on/off switching ratio of ~200 is invariant of
bending. These results indicate that the ultrathin single-
crystalline perovskite photodetector yields great mechanical
flexibility. Besides, to investigate the stability of the device after
flexure the photodetector was held in bent states for 1 min at
each measured radius under laser illumination at ambient
conditions. As shown in Figure 3c, the photocurrents and dark
currents both have no obvious changes at various radii,
indicating that this photodetector possesses robust bending
stability.
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Comparing with recently reported flexible perovskite
photodetectors working in the visible range (summarized in
Table 1), our flexible photodetector exhibits several character-
istics: (i) Ultrathin active layer with 20 nm in thickness, which
is the thinnest flexible perovskite photodetector to the best of
our knowledge. (ii) High responsivity up to 5600 A/W, much
higher than that of previously reported flexible perovskite
photodetectors for 2 orders of magnitude,”*™>* which
demonstrates the remarkable detection efficiency of the
photodetector. (iii) Fast response with the rise/fall time of
3.2/9.2 ps, which gives rise to an outstanding 3 dB bandwidth
up to 0.2 MHz. The quick response of the device demonstrates
the potential in high-speed detections and optical communi-
cations. (iv) Specific detectivity with the value of 6.59 x 10"
Jones is comparable with previous work,”~%* which could be
further enhanced by suppressing the dark current.

Thickness-Dependent Performance. The mechanical
flexibility and bending stability of this single-crystalline

https://dx.doi.org/10.1021/acs.nanolett.0c02468
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perovskite photodetector are quite interesting since the single-
crystalline perovskite material is often considered as a kind of
fragile material, which is easily damaged by a variety of
mechanical deformations including bending, compression, and
tension.”>** Here, we compare the bending durability of the
ultrathin photodetector (20 nm in thickness) with two control
samples with much thicker active layers (202 and 809 nm in
thickness), and more examples are provided in Supporting
Information S4. All of these photodetectors are fixed on the
mechanical bending machine and bent for 1000 times (from
flat to the bending radius of 11 mm). Figure 4a,b plots the I-V/
and I—t curves of the ultrathin device (20 nm in thickness) as a
function of bending cycles. No visible deterioration has been
detected in photocurrent and on/off switching ratio after the
bending test for 1000 times. Figure 4c plots the responsivity
and detectivity of this ultrathin device as a function of bending
cycles. Here the detectivity of the device is obtained based on
the measured noise currents (Supporting Information S4). We
can see that both the responsivity and the detectivity of the
device remain quite stable during the bending process. This
result indicates that the photodetector with ultrathin active
layer yields outstanding bending durability.

For comparison, the photodetector with a 202 nm thick
active layer possesses an obvious degeneration in the
photocurrents at the bias of —=1 V for ~21% after 1000 time
bending as shown in Figure 4d. Correspondingly, the on/off
switching ratio decreases for ~10% shown in I—t curves as
plotted in Figure 4e. In addition, the responsivity and
detectivity of the device present an obvious decline in the
bending process as illustrated in Figure 4f (~45%).
Furthermore, for the photodetector with an 809 nm thick
active layer the photocurrents varied from 4.3 to 2.2 nA at the
bias of —1 V for bending 1000 times (Figure 4g), which means
an ~49% degradation. The decrease in the photocurrents also
leads to an obvious degeneration in the on/off switching ratio
as shown in Figure 4h (~56%) and in the responsivity (or the
detectivity) as shown in Figure 4i (~70%). These results
demonstrate that the thinner the active layer, the less
degradation in the photoresponse will be induced after the
repeated bending cycles.

Figure 4j shows that the normalized photocurrents varies
with a bending radius of three devices with different
thicknesses. For the ultrathin device (thickness of 20 nm),
there is no obvious degradation in the photocurrents during
the bending. However, for the thick samples the photocurrents
drop along with the decrease of bending radius, while the
decrease for the 809 nm thick sample (~29%) is much more
intense than that for the 202 nm thick sample (~15%). This
result demonstrates that the mechanical flexibility of the single-
crystalline perovskite photodetector gradually decreases
following the increase of the thickness of the active layer.
Furthermore, the degradation of the photocurrents gradually
accumulates during the repeated bending process and results in
significant performance degradation summarized in Figure 4kl
However, the 3 dB bandwidths of the devices with different
thicknesses (Supporting Information S4) have no obvious
variation during the bending process for all devices with
different thicknesses.

Our results demonstrate that the reduction in the thickness
of the single-crystalline perovskite effectively promotes the
flexibility and bending durability of the flexible photodetectors.
This effect can be interpreted by the induced strain in bending;
the strain on the top surface of the sheet was directly
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proportional to the thickness of the crystal, and the flexural
rigidity was inversely proportional to the thickness of the
sample.”® Therefore, thicker sheets suffer stronger strain, which
decreases their bending reliability. Optical measurements were
also taken to prove the damage brought from strain. Although
optical absorption of the sheets is less affected by the bending
(Supporting Information S2), the decrease in the photo-
luminescence (PL) intensities and the variations in the PL
peak positions are both more severe for thicker samples after
thousands of times of bending (Supporting Information S5).

B CONCLUSION

We report here a low-cost quasi-static solution-based approach
to grow ultrathin single-crystalline perovskite materials. At the
significantly reduced thickness of 20 nm, the brittle material
has been transformed into a highly flexible sheet without
compromising its excellent photoelectric conversion efficiency.
We have demonstrated that a flexible photodetector using the
ultrathin single-crystalline film as the active material achieves a
record-high photoelectric responsivity of 5600 A/W, 2 orders
of magnitude higher than that made of polycrystalline
perovskite. The reduced thickness of the single-crystalline
perovskite film also enhances its temporal response, resulting
in a broadband photodetection from DC to 0.2 MHz. These
data open up a promising potential in fabricating high-
performance flexible optoelectronic devices for bionics,
robotics, health care, and so forth.

B METHODS

Synthesis of Perovskite. A 0.8 mol/L. MAPbBr; solution
was prepared by dissolving MAPbBr; powder in DMEF. Six
microliters of the solution was dropped onto a freshly cleaved
mica substrate and quickly covered with another piece of
cleaved mica slice. The layered assemblage was then placed on
a hot plate and heated to 30 °C for more than 10 h to achieve
quasi-static solution growth (Supporting Information S1). The
ultrathin perovskite sheets grew on the mica, and those
ultrathin perovskite sheets usually have a thickness from 10 to
100 nm and a lateral size larger than 10 um. Actually by
adjusting the volume of solvent, heating temperature, and
growth time, the thickness and the area of the sheets could be
tuned. For example, if 12 uL of precursor solution is applied,
the grown perovskite sheets have the thickness from 100—400
nm, and the lateral size larger than 50 pm.

Characterizations. Optical micrographs and fluorescence
images of the sheets were obtained with an optical microscope
(ECLIPSE 80i, Nikon, Tokyo, Japan). Sheet morphology and
thickness were measured with a Multimode atomic force
microscope (AFM, Digital Instruments, Tonawanda, NY) in
tapping mode. Crystallographic data were obtained with an
ARL X'TRA powder diffractometer (Thermo Scientific,
Waltham, MA). Field-emission scanning electron microscopy
(FE-SEM) was performed with a Sigma 300 SEM (Zeiss,
Oberkochen, Germany). Elemental distribution in the sheets
was analyzed by energy dispersive X-ray spectroscopy with an
EDS X-Max Extreme silicon drift detector (Oxford Instru-
ments, Abingdon, U.K.) attached to the SEM system.

Optical Properties and Stability. Steady-state trans-
mission spectra and absorption spectra were obtained with a
20/30 PV microspectrophotometer (CRAIC Technologies,
San Dimas, CA). Spectra were collected with a 10X objective
lens over a 15 ym? area using the mica substrate as a reference
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for background subtraction, while an objective lens with a
numerical aperture of 0.2 was used to exclude the influence of
the wide-angle reflection. Steady-state photoluminescence was
measured using a confocal micro-Raman system (Princeton
Instruments, Trenton, NJ). A WhiteLase SC400 super-
continuum fiber laser source (Fianium, Southampton, U.K.)
was used for sample excitation at 488 nm. The samples were
fixed on the outer jaws of a vernier caliper and flexed at various
bending radii by decreasing the space between the jaws.

Device Fabrication and Measurement. The photo-
detector was fabricated by evaporating 80 nm thick Au
electrodes onto 20 nm thick MAPbBr; nanosheets covered
with patterned Si shadow masks. The active area of the
photodetector ranges from 30 ym” to 100 um* (Supporting
Information S3). Here the active area of the photodetector is
~36 um?. The electrodes extended to the copper tape adhesive
at the edge of the samples to reduce the influence of the
measurements, and all of the measurements (except the
measurements of moisture stability in Supporting Information
S3) were performed in ambient condition at room temperature
(24 °C) and ~40% humidity. The photocurrents were
measured using a pair of tungsten steel probes connected to
a 2636B SourceMeter (Keithley Instruments, Cleveland, OH).
Hlumination was provided by a 514 nm CW laser (Spectra-
Physics, Santa Clara, CA) to measure the photoresponses
under the flat state and bending states, respectively. A mode-
locked Ti:sapphire laser (Spectra-Physics, MaiTai HP) with a
BBO crystal was used to measure the response time and 3 dB
bandwidth, and a broadband halogen lamp (10.5 mW/ cm?,
Thorlabs, OSL-2) with collimator (Thorlabs, OSL2COL) was
employed to measure the flexibility and bending stability of the
sample with different thickness. Light modulation was carried
out with a chopper (ThorLabs, Newton, NJ) with tunable
frequency and an acoustic optical modulator (Gooch &
Housego, 1-M080).

The responsivity is determined by

_ AT D — g
pP-S p-S

where I, is the illuminated current and Iy, is the dark
current, P is the laser power density, and S is the active area of
PD.
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