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Abstract: In this work, we propose a non-Hermitian effective medium theory to interpret the
spawning rings of exceptional points out of the Dirac cones in the band structures of photonic
crystals with loss/gain. Based on this theory, we predict and demonstrate two unique types of
band dispersions of fully passive photonic crystals. In one type, the exceptional ring shrinks into
a complex Dirac point associated with a complex Dirac-like cone. In the other type, a point of
quadratic degeneracy is realized in the imaginary frequency spectrum. Our theory provides a
unified picture for the exceptional points in effective media and gives rise to novel concepts like
complex Dirac-like cones in non-Hermitian photonics.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The effective medium theory [1,2] has provided a powerful tool in the fields of metamaterials
[3] and photonic crystals (PhCs) [4] to explain the band dispersions at low frequencies. It has
been discovered that when the effective permittivity and permeability accidentally cross zero
at the same frequency, a Dirac point would appear at the Brillouin zone center with conical
dispersions in its vicinity [5]. Moreover, there are simultaneously flat bands crossing the Dirac
point, which coincide well with the mathematical condition of the longitudinal electromagnetic
modes, i.e. zero permittivity or permeability component. Therefore, the effective medium
theory can perfectly explain both the Dirac conical dispersion as well as the associated flat
bands of longitudinal modes. Such unique dispersions and effective parameters have been
observed in various frequency regime of electromagnetic and acoustic waves [5–16] and may
have many important applications such as photonic chips [8–10], cloaking [11] and coherent
perfect absorption [12,13], etc.

Recently, by introducing loss into the PhC with Dirac-like conical dispersion (Dirac cones
plus the flat bands of longitudinal modes), the emergence of the spawning rings of exceptional
points (EPs) out of the Dirac cones has been observed [17–21]. Inside the ring of EPs, the real
parts of the eigen-frequencies have degenerate flat dispersions, while the imaginary parts split
into two branches. Outside the ring of EPs, the situations are just the opposite. The real parts
split, while the imaginary parts tend to degeneracy. Additional flat bands of longitudinal modes
also emerge in the band structure of such non-Hermitian PhCs, but was not incorporated into the
Hamiltonian model. Very recently, extensive efforts have been made to establish an effective
medium theory for the non-Hermitian PhCs [22–24]. However, so far, a neat explanation of the
ring of EPs from the effective medium point of view is still lacking.

#425862 https://doi.org/10.1364/OE.425862
Journal © 2021 Received 23 Mar 2021; revised 21 Apr 2021; accepted 21 Apr 2021; published 26 Apr 2021

https://orcid.org/0000-0001-8231-9901
https://orcid.org/0000-0003-0424-2771
https://orcid.org/0000-0002-3823-1272
https://orcid.org/0000-0002-3614-3375
https://orcid.org/0000-0002-0040-9274
https://doi.org/10.1364/OA_License_v1#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.425862&amp;domain=pdf&amp;date_stamp=2021-06-04


Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 14346

In this work, we extend the local effective medium theory [5] to the non-Hermitian regime.
In this picture, we assume that the effective parameters are independent of the wave vector, but
dependent on both the real and imaginary parts of the angular frequency, i.e. ω = ωR + iωI .
Here, ωR describes the oscillating frequency, and ωI describes the decaying or amplifying rate of
waves. Recently, it has been demonstrated that ωI can introduce the role of “effective gain” or
“effective loss”, which can be conveniently controlled by increasing or decreasing the intensity
of incident waves at a certain rate [25,26]. Here, by extending the frequency dispersion from
ωR to ωI , we have established a simple local effective medium which can not only explain the
rings of EPs but also predict the occurrence and position of the additional flat bands in the band
structure. Based on this picture, we further show two other unique types of band dispersions.
One type has Dirac-like cones in both the ωR and ωI band structures, and the other type has a
band gap and a point of quadratic degeneracy in the ωR and ωI band structures, respectively.
Both dispersions have been verified by designing non-Hermitian PhCs. Our work paves a road for
the manipulation of EPs and Dirac cones in the framework of non-Hermitian effective medium.

We start from the Hermitian PhC model (i.e. without loss or gain) with accidental Dirac-like
cone occurring at the Brillouin zone center [5]. The PhC can be characterized by effective
permittivity ε(ω) and permeability µ(ω) as a linear function of frequency:⎧⎪⎪⎨⎪⎪⎩

ε(ω) = Aε × (ω − ωε),

µ(ω) = Aµ × (ω − ωµ),
(1)

where ωε = ωµ = ωD, and Aε and Aµ are approximately real constants in the small frequency
regimes near ωε and ωµ. As demonstrated previously, the degeneracy of zero permittivity and
permeability at the same frequency ωD would lead to the formation of Dirac cones with ωD as
the Dirac point frequency [17–21]. Near the Dirac point, ω varies almost linearly with the wave
vector k.

Equation (1) holds for the Hermitian system without loss or gain. When loss/gain is introduced
into the system, the eigen-frequency turns into a complex one as ω = ωR + iωI . Here we
consider the time variation term e−iωt such that ωI>0 (or ωI<0) indicates the amplification (or
attenuation) of electromagnetic wave energy. Generally, the effective permittivity ε(ω) and
permittivity µ(ω) are complex and dispersive, which can be expressed as ε(ω) = εR(ω) + iεI(ω)
and µ(ω) = µR(ω) + iµI(ω). In a small frequency regime near the Γ point, we propose the
following linear relation between the effective parameters and the eigen-frequency in a similar
form of Eq. (1) with complex Aε and Aµ:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

εR(ωR ) = AεR × (ωR − ωεR ),

µR(ωR ) = AµR × (ωR − ωµR ),

εI(ωI ) = AεI × (ωI − ωεI ),

µI(ωI ) = AµI × (ωI − ωµI ),

(2)

where the coefficients AεR , AµR , AεI and AµI satisfy AεR ≈ AεI ≈ Aε and AµR ≈ AµI ≈ Aµ, in order
to have complex Dirac-like cones. With the introduction of the loss/gain into the system, the
effective medium turns into a non-Hermitian one, whose dispersion is changed by the loss/gain.
When the loss/gain is relatively small, ωεR and ωµR are close to the ωD, which is the Dirac point
frequency in absence of loss/gain. In the complex frequency space, the dispersion relation can be
expressed as,

(ωR + iωI)
2(εR + iεI)(µR + iµI) = c2k2, (3)

where k is the in-plane wave vector (kx, ky), and c is the speed of light in free space. Equation (3)
is a general dispersion relation, and is applicable for both Hermitian and non-Hermitian models.
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In order to verify the validity of Eq. (2), we demonstrate a practical case of PhC by using the
finite-element software COMSOL Multiphysics. First, we construct a Hermitian PhC with a
Dirac-like cone. The PhC is composed of a square array of dielectric cylindrical rods in free
space. The unit cell is illustrated by the inset graph in Fig. 1(a). The lattice constant is a. The
radius and relative permittivity of the dielectric cylindrical rods are Ra = 0.2a and εA = 12.5,
respectively. For transverse-magnetic (TM, electric field along the rods) modes, such a PhC has a
Dirac-like cone with Dirac point frequency ωDa/2πc = 0.541, due to the accidental degeneracy
of the monopole mode and the degenerate dipole modes at the Γ point [5]. Then, we assume that
the εA is changed to be complex as εA = 12.5 + 0.5i in the frequency regime of interest. The
positive imaginary part indicates loss in the rods and turns the PhC into a non-Hermitian system.
The band structures in terms of ωR and ωI are shown in Figs. 1(a) and 1(b), respectively. They
are calculated along the Γ − X direction. It is seen that the Dirac-like conical dispersion evolves
into the interesting phenomenon of a spawning ring of EPs [17].

Fig. 1. [(a) and (b)] Complex band structures of a PhC composed of cylindrical rod with
εA = 12.5 + 0.5i in background medium of εB = 1. (a) and (b), respectively, show the
real and imaginary parts of eigen-frequencies for given real Bloch wave vectors based on
numerical calculations. (c) Real and (d) imaginary parts of the effective parameters of this
PhC. Retrieved (e) real and (f) imaginary parts of eigen-frequencies based on the effective
parameters. The gray solid line denotes the longitudinal mode.
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This emergence of the ring of EPs is usually understood within a k.p approximation by con-

structing the effective Hamiltonian Heff =
⎛⎜⎝
ωD vg |k|

vg |k| ωD − iγd

⎞⎟⎠ with complex eigen-frequencies

as [17],
ω = ωD − i

γd
2

± vg

√︂
|k|2 − k2

c , (4)

where ωD and vg are angular frequency and group velocity of the linear Dirac dispersion in
absence of loss/gain, respectively. The quantity γd describes the gain and loss, and kc ≡ γd/2vg.
When γd = 0, Eq. (4) is simplified to ω = ωD ± vg |k|, which describes the formation of the
Dirac-like cone in the Hermitian case. While when γd ≠ 0, a ring of EPs appears at |k| = kc,
as observed in Figs. 1(a) and 1(b). We note that here ωI is not purely dispersion-less for |k| far
away from the ring of EPs, because the effective Hamiltonian is only an approximation near the
frequency of the Dirac point ωD [17].

From the aspect of the effective medium model with parameters and dispersion described by
Eqs. (2) and (3), the solution of dispersion-less ωR within the ring of EPs is ωεR = ωµR = ωD.
Therefore, we immediately have εR = µR = 0 when ωR = ωD. At the Brillouin zone center (i.e.
|k| = 0) within the ring of EPs, we can obtain two solutions of Eq. (3), i.e., ωI = ωεI (upper
frequency) and ωI = ωµI (lower frequency), which correspond to εI = 0 and µI = 0, respectively.
The ring of EPs can be obtained at the frequency of (see Supplement 1 for detailed derivation),

ωR = ωD andωI =
ωεI + ωµI

2
(5)

with a radius of (in the k space)

kEP =
√︁

AεAµ
ωD

c
ωεI − ωµI

2
. (6)

At the ring of EPs, the ε(ωR,ωI) and µ(ωR,ωI) are purely imaginary, but with opposite signs.
This result is consistent with previous effective medium studies of similar systems [23,24]. We
note that the signs of the imaginary parts of ε(ωR,ωI) and µ(ωR,ωI) are defined under ωI<0.
Therefore, they do not indicate the real gain or loss, but an “effective gain” or “effective loss”
relative to the decaying behavior defined by ωI<0 [26,27].

We further verify the effective medium parameters based on the eigenmode analysis [28,29].
Based on the band structures and the wave impedance regarding to eigenmodes, we obtain the
complex effective parameters ε(ω) and µ(ω) with respect to complex eigen-frequency ω (see
details in Supplement 1). We find that nearby the Brillouin zone center εR and µR vary almost
linearly with ωR, while εI and µI vary almost linearly with ωI , which is in accordance with
Eq. (2). Through fitting the linear relations, the relevant parameters in Eq. (2) are retrieved
as AεR = 3.645(a/2πc), AµR = 10.749(a/2πc), AεI = 3.686(a/2πc), AµI = 10.653(a/2πc),
ωεR ≈ ωµR ≈ ωD = 0.541(2πc/a), ωεI = −0.00447(2πc/a), ωµI = −0.0098(2πc/a). The
corresponding effective permittivity and permeability are plotted in Figs. 1(c) and 1(d) as
functions of ωR and ωI , respectively. It is observed in Figs. 1(c) and 1(d) that εR = µR = 0
at ωR = ωεR = ωµR = ωD, while εI = 0 at ωI = ωεI and µI = 0 at ωI = ωµI . This result is
consistent with the analysis by using the effective medium picture based on Eqs. (2) and (3).
Moreover, we can see that µR = µI = 0 at ωR = ωD and ωI = ωµI . This perfectly explains the
occurrence and position of additional flat band of longitudinal modes that emerges at ωR = ωD
and ωI = ωµI in the ωR and ωI band structures. Here, we note that the condition of εR = εI = 0
cannot induce flat bands of longitudinal modes because here we consider the TM polarization
where the electric field is in the out-of-plane direction and cannot be longitudinal with the
in-plane wave vector.

https://doi.org/10.6084/m9.figshare.14460258
https://doi.org/10.6084/m9.figshare.14460258
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It is convenient to reconstruct the complex band structure by using Eq. (3) with the fitted
parameters. Figures 1(e) and 1(f) show the retrieved ωR and ωI , respectively. The flat bands
are plotted as horizontal gray lines according to the condition of µR = µI = 0. Clearly,
the reconstructed band structures match well with those of the PhC obtained by finite-element
numerical calculations (Figs. 1(a) and 1(b)). Note that the slight difference between the simulation
results (Figs. 1(a) and 1(b)) and effective medium prediction (Figs. 1(e) and 1(f)) is caused by
the linear approximation in the effective medium description. The dispersion-less ωR within
the ring of EPs, the shape of the ring, as well as the additional flat bands are all well predicted
by the non-Hermitian effective medium theory. In the Supplement 1, we also show that the
non-Hermitian effective medium gradually converges to the previous Hermitian one when the
loss/gain in the system is reduced to zero.

Interestingly, we find that the radius of the exceptional ring can be manipulated and even
shrinks into a point by simply engineering the loss/gain in the different components of the
non-Hermitian PhC, as indicated by Eq. (6). In this case, the parameters of effective media have
ωεR = ωµR = ωD and ωεI = ωµI = ωDI . This indicates that Dirac-like cones are formed in both
ωR and ωI band structures. In other words, the Dirac-like cone is formed in a complex frequency
space of ω = ωR + iωI , rather than only in the real frequency space. Through some derivation,
we obtain dispersions ωR = ωD ±

β
ωD

k and ωI = ωDI ±
βωDI
ωD2 k near the complex Dirac-like point

(ωD,ωDI), where β = c/
√︁

AεAµ. This Dirac-cone like phenomenon in both real and imaginary
frequency domain is absent in Hermitian systems like loss-less PhCs.

We note that this amazing phenomenon can be achieved in fully passive PhCs. For demonstra-
tion, we take the PhC model in Fig. 1 as an example, but the relative permittivities of the cylindrical
rods and the background medium are changed to εA = 12.5 + 0.33i and εB = 1 + 0.0264i, respec-
tively. Here, we find that through varying the imaginary parts of εA and εB, the zero-crossing
positions of effective εI and µI can be efficiently tuned, i.e., ωεI and ωµI are changed. While the
slope of εI and µI with respect to ωI remains unchanged, i.e., AεI and AµI remain unchanged (see
Supplement 1). Therefore, here we can only engineer the imaginary parts of εA and εB to realize
the condition ωεI = ωµI = ωDI .

The corresponding complex band structures are calculated using software COMSOL Multi-
physics, as plotted in Figs. 2(a) and 2(b). Interestingly, the ring of EPs disappears and a Dirac cone
occurs in both the ωR and ωI band structures (more specifically, ωRa/2πc = ωDa/2πc = 0.541
in the ωR spectrum, and ωIa/2πc = −0.00714 in the ωI spectrum). The effective parameters
of this PhC are retrieved and found to have linear dispersions satisfying Eq. (2) as the previ-
ous case. The relevant parameters are AεR ≈ AεI = 3.645(a/2πc),AµR ≈ AµI = 10.6(a/2πc),
ωεR ≈ ωµR = ωD = 0.541(2πc/a) and ωεI ≈ ωµI = ωDI = −0.00714(2πc/a), respectively. The
real and imaginary parts of ε and µ are plotted in Figs. 2(c) and 2(d), respectively. It is seen that
εR = µR = 0 at ωR = ωD, and εI = µI = 0 at ωI = ωDI . The retrieved complex band structures
based on these effective parameters (Figs. 2(e) and 2(f)) match well with the simulation results
(Figs. 2(a) and 2(b)), confirming the validity of the effective medium picture. The additional flat
band of longitudinal modes now crosses the complex Dirac point (ωD,ωDI) in the ωR and ωI
band structures, because µR = µI = 0 at the complex Dirac point. This finding shows that the
spawning ring of EPs can shrink to a complex Dirac point in a complex Dirac-like cone in a fully
passive PhC.

Besides the case of ωεR = ωµR = ωD and ωεI ≠ ωµI (ring of EPs) and the case of ωεR = ωµR =

ωD and ωεI = ωµI = ωDI ≠ 0 (complex Dirac-like cones) discussed above, the non-Hermitian
PhC can also possess effective parameters satisfyingωεR ≠ ωµR andωεI = ωµI = ωDI . In this case,
the Dirac-like cone in theωR band structure would split into a band gap, while the Dirac-like point
in the ωI band structure would be transformed into a point of quadratic degeneracy [30]. Through
some derivation, we obtain dispersionsωR = ωεR+

α
ωεR

2(ωεR−ωµR )
k2,ωR = ωµR−

α
ωµR

2(ωεR−ωµR )
k2

https://doi.org/10.6084/m9.figshare.14460258
https://doi.org/10.6084/m9.figshare.14460258
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Fig. 2. [(a) and (b)] Complex band structures of a PhC composed of cylindrical rod with
εA = 12.5 + 0.33i in a background medium of εB = 1 + 0.0264i. (a) and (b), respectively,
show the real and imaginary parts of eigen-frequencies for given real Bloch wave vectors
based on numerical calculations. (c) Real and (d) imaginary parts of the effective parameters
of this PhC. Retrieved (e) real and (f) imaginary parts of eigen-frequencies based on the
effective parameters. The gray solid line denotes the longitudinal mode.
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in the ωR spectrum, and ωI = ωDI −
2αωDI

ωεR
3(ωεR−ωµR )

k2, ωI = ωDI +
2αωDI

ωµR
3(ωεR−ωµR )

k2 in the ωI

spectrum, which indicates a point of quadratic degeneracy. Here α = c2/AεAµ.
As an example, we change the relative permittivities of PhC model studied in Fig. 1 to
εA = 12 + 0.33i and εB = 1.04 + 0.02978i. The corresponding complex band structures are
plotted in Figs. 3(a) and 3(b). Evidently, a band gap appears in the ωR band structure (Fig. 3(a)),
while a point of quadratic degeneracy is seen in the ωI band structure (Fig. 3(b)). The effective
parameters are retrieved and found to have linear dispersions. The relevant parameters are
obtained as AεR ≈ AεI = 3.804(a/2πc), AµR ≈ AµI = 10.380(a/2πc), ωεR = 0.539(2πc/a),
ωµR = 0.550(2πc/a) and ωεI ≈ ωµI = ωDI = −0.00759(2πc/a). The real and imaginary parts of
ε and µ are presented in Figs. 3(c) and 3(d), respectively. The retrieved complex band structure
by using these effective parameters are presented in Figs. 3(e) and 3(f), which match well with the
simulation results (Figs. 3(a) and 3(b)). The band edges in the ωR band structure are determined
by ωR = ωεR and ωR = ωµR . The additional flat band of longitudinal modes is induced by
µR = µI = 0 at the frequency ofωR = ωµR andωI = ωµI = ωεI . This finding shows that quadratic
degeneracy can be realized in the ωI band structure by simply designing ωεI = ωµI = ωDI .

Fig. 3. [(a) and (b)] Complex band structures of a PhC composed of cylindrical rod with
εA = 12 + 0.33i in background medium of εB = 1.04 + 0.02978i. (a) and (b), respectively,
show the real and imaginary parts of eigen-frequencies for given real Bloch wave vectors
based on numerical calculations. (c) Real and (d) imaginary parts of the effective parameters
of this PhC. Retrieved (e) real and (f) imaginary parts of eigen-frequencies based on the
effective parameters. The gray solid line denotes the longitudinal mode.
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Table 1 summarizes the features of band structures for different types of parameters discussed in
Figs. 1–3 based on the non-Hermitian medium description. Interesting characteristics of complex
band structures including the ring of EPs, complex Dirac-like cones, quadratic degeneracy and
flat bands of longitudinal modes are observed by simply adjusting the loss in the PhC. We note
that the many of the predicted phenomena are clearly beyond the description of the Hamiltonian
model for the ring of EPs. The non-Hermitian effective medium theory, however, can interpret
all the above phenomena and is thus universal.

Table 1. Features of band structures of non-Hermitian PhCs with loss

Characteristics of parameters Features of band structures
Flat band

ωεR , ωµR ωεI , ωµI Real parts Imaginary
parts

Case 1
(Fig. 1)

ωεR = ωµR = ωD ωεI ≠ ωµI Dispersion-less
within EP ring

Ring of EPs @
⎧⎪⎪⎨⎪⎪⎩

ωR = ωD

ωI = ωµI

Case 2
(Fig. 2)

ωεR = ωµR = ωD ωεI = ωµI = ωDI Dirac-like cone Dirac-like
cone

@
⎧⎪⎪⎨⎪⎪⎩

ωR = ωD

ωI = ωDI

Case 3
(Fig. 3)

ωεR ≠ ωµR ωεI = ωµI = ωDI Band gap Quadratic
degeneracy

@
⎧⎪⎪⎨⎪⎪⎩

ωR = ωµR

ωI = ωDI

The above discussions are within the picture of complex eigen-frequencies and real Bloch wave
vectors. In fact, we have also investigated the validity of the non-Hermitian effective medium
theory under the other picture of real eigen-frequencies and complex Bloch wave vectors. The
results also prove the validity of the non-Hermitian effective medium theory, and the details are
presented in the Supplement 1.

In summary, we have proposed a local non-Hermitian effective medium theory that can
accurately predict the spawning ring of exceptional points in photonic crystals with loss/gain.
Based on this theory, we also predict the existence of complex Dirac-like cones with Dirac
conical dispersions, the quadratic degeneracy and the additional flat bands in the band structures
of real and imaginary frequencies. By engineering non-Hermitian photonic crystals, we have
numerically realized such effective media with complex Dirac-like cones or quadratic degeneracy.
Our work thus opens a gate for exploring the rich physics in non-Hermitian effective media.
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