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Abstract: Symmetry usually plays a key role in the formation of the Dirac cone in the band
structure of triangular or hexagonal systems. In this work, we demonstrate a systematic method
to create Dirac cones of accidental degeneracy in general photonic crystals without symmetry.
With this method, a band gap can be closed gradually through a series of modification to the unit
structure based on the eigenfields of the band edges, and consequently a Dirac point is formed
with Dirac conical dispersions in its vicinity. The validity of this approach is demonstrated
by three examples. We further show that the Dirac cones of accidental degeneracy have the
same properties as the symmetry-induced Dirac cones, such as finite group velocity and pseudo-
diffusive transmission. Our finding opens a route for the engineering of accidental degeneracy in
general photonic crystals beyond the scope of high-symmetry ones.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Symmetry plays a significant role in forming novel band diagrams, which can induce intricate
characteristics in condensed matter physics [1–4] and periodic systems of classical waves like
metamaterials [5–7], photonic crystals [8–16] and sonic crystals [17–20], etc. Especially, the
Dirac cone and linear dispersion relations around the K and K’ points in the Brillouin zone of the
triangular or hexagonal systems have recently attracted immense attention. Due to the existence
of Dirac cones [21], graphene is known to exhibit intriguing transport properties, such as Klein
tunneling, Zitterbewegung, anti-localization, abnormal quantum Hall effect, etc. Haldane et al.
[22,23] pointed out the existence of photonic Dirac cones in two dimensional photonic crystals
and discussed the unidirectional propagation of surface modes caused by the time-reversal
symmetry breaking. Ochiai and Onada extended this discussion to honeycomb-lattice photonic
crystals [24]. Zhang proposed the realization of Zitterbewegung effect in photonic crystals by the
incidence of a pulse near the Dirac point frequency [25]. Pseudo-diffusive transmission with
intensity inversely proportional to the thickness of photonic crystal array was also discovered
by Sepkhanov et al. [16] and demonstrated by Diem et al. [26]. In the previous literatures,
most of the Dirac conical dispersions are induced by the symmetry such as C6V , C4V and mirror
symmetries, which can be understood by the theory of symmetry groups [13,14,27,28]. In the
latest spotlights: breaking the symmetry has been utilized as a general method to destroy (gap)
the Dirac points, and thus create band gaps supporting edge modes [12,29–36].

Accidental degeneracy in the band structure, which is a result of varying the material and
geometrical parameters in the system, has also been utilized to realize some special band
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dispersions. Huang et al. discovered that Dirac-like cone can be created at the center of the
Brillouin zone by the accidental degeneracy of dipolar and monopolar bands in two-dimensional
dielectric photonic crystals of square or triangular lattice [15]. At the Dirac-like point, such a
system is equivalent to a material of zero effective refractive index [11,15,17,37–41]. Sakoda
analyzed the creation of photonic Dirac-like cones by accidental degeneracy at the Brillouin
zone center and some other high-symmetry points [13]. The Dirac-like points [12,15,41] or
semi-Dirac points [38–40] have so far been realized on the high-symmetry lines or points in
some symmetric systems. However, to date, the researches on the accidental degenerate points in
systems without symmetry are still very limited.

In this paper, we introduce a general method to approximately create Dirac points and Dirac
cones by accidental degeneracy in a system of photonic crystals without symmetry. This method
is based on the band diagram engineering [42,43] which was utilized previously to enlarge the
band gaps of photonic/phononic crystals. Here, we apply this engineering process to close up a
band gap instead, which turns out to be a general and convenient way for the creation of Dirac
cones of accidental degeneracy. To show the validity of this approach, we demonstrate three
examples. In the first example, we break the high symmetry of the rod such that the Dirac cone at
the K point of a triangular lattice is also broken, then we apply the band engineering (targeted
insertions in the unit cell) to gradually close up the band gap and restore a Dirac cone in the
system without symmetry. In the second example, we break the C6V symmetry of a triangular
lattice by changing the angle between the lattice vectors to be 45° instead of 60°, which also
destroys the Dirac cone. Then, we apply the band engineering to the system and a Dirac cone
is restored with this oblique lattice of 45°. Finally, in a photonic crystal of a square lattice, we
demonstrate that Dirac cones can also be realized at a k point away from the high-symmetry
lines and points. These findings reveal that the Dirac cones of accidental degeneracy can exist
in general systems without symmetry. Furthermore, the Dirac cones of accidental degeneracy
exhibit the same properties as the symmetry-induced Dirac cones, such as finite group velocity
and pseudo-diffusive transmission. Our work thus paves a road for the realization of Dirac cones
of accidental degeneracy in general systems without symmetry.

2. Method to create the Dirac cones of accidental degeneracy

The theory of band diagram engineering via the eigenmode analysis [42,43] is the foundation of
this work. By analyzing the field distributions of the eigenmodes at the band edges, it is possible
to change the unit structure of the photonic crystal accordingly, so as to shift the eigenfrequency
towards the desired direction. For electromagnetic waves in two dimensional systems, the
following formula has been obtained, respectively, for the transverse electric (TE) polarization
(magnetic field polarized in the z direction) as(︃ ˜︁ωnk

ωnk

)︃2
− 1 ≈

∫
[˜︁ε−1(r) − ε−1(r)]|Dnk(r)|2dr∫

ε−1(r)|Dnk(r)|2dr
(1)

and for the transverse magnetic (TM) polarization (electric field polarized in the z direction) as(︃ ˜︁ωnk

ωnk

)︃2
− 1 ≈

∫
[ε(r) − ˜︁ε(r)]|Enk(r)|2dr∫
ε(r)|Enk(r)|2dr

(2)

Here, ωnk and ω̃nk denote the eigenfrequencies before and after the change of the unit structure,
respectively. ε(r) and ε−1(r) denote the permittivity distribution before and after the change of
the unit structure, respectively. Dnk(r) and Enk(r) denote the displacement and electric fields for
the TE and TM cases, respectively. In the following, we utilize this theory to close up band gaps
and create Dirac cones of accidental degeneracy.
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In Fig. 1(a), we show the band diagram of the first two bands of a 2D triangular-lattice photonic
crystal composed of dielectric rods with a diameter R=0.6a for the TM polarization. The lattice
constant is a and the unit cell is shown in the inset graph. The dielectric rod and the background
have permittivity 1 and 7, respectively. In the band diagram, it is clearly seen that there exists a
Dirac point at the K point, due to the C6V symmetry of the triangular lattice. Then, we break the
high symmetry of the unit structure by changing the cylinder into a combination of a cylinder
and a square column, as shown in the inset graph of Fig. 1(b). The degenerate Dirac point is thus
broken and a band gap is formed between the two bands shown in Fig. 1(b). Next, we reduce
this band gap and reform the Dirac point at the K point by using band diagram engineering, i.e.
changing the unit structure according to the eigenfields of the band edge modes. From Eq. (2),
for TM polarization, when ε(r) − ε̃(r)>0, i.e. the permittivity of the new structure is smaller
than that of the original one, we have (ω̃nk/ωnk)

2>1, i.e. the eigenfrequency would be shifted
upward to higher frequencies. On the contrary, when ε(r) − ε̃(r)<0, i.e. the permittivity of the
new structure is larger than that of the original one, we have (ω̃nk/ωnk)

2<1 indicating that the
eigenfrequency will be reduced. In order to close up the band gap and reform the Dirac point at
the K point, the difference between the upper and the lower eigenfrequencies should be reduced.
From Eq. (2), it is also seen that the effect of eigenfrequency shift is proportional to |Enk(r)|2,
indicating that the modification of the unit structure should be made according to the distribution
of the eigenfield |Enk(r)|2.

Fig. 1. (a) Band diagram for a triangular lattice of cylinders with a lattice constant a
shown in the inset graph. The cylinder has a permittivity ε = 1 and diameter R=0.6a. The
background has a permittivity ε = 7. (b) Band diagram after breaking the symmetry by
changing the shape of the cylinder, as shown in the inset graph. (c) Distribution of |Ez | at
the K point of first band in Fig. 1(b). (d) Distribution of |Ez | at the K point of second band
in Fig. 1(b). (e) The engineering of the unit cell via an insertion of a rod with permittivity
ε = 18.92. (f) Normalized frequencies of the two bands at the K point as functions of the
permittivity of first inserted rod.
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From the above analysis, in order to close up the band gap, the unit structure should be
changed where the corresponding electric field intensity has the largest difference between the
two eigenfields of the band edges. Therefore, two optimal ways to close up the gap are proposed
here. One way is to shift the lower band edge of the band gap upward while keeping the upper
edge almost intact. This can be achieved by reducing the permittivity where the field intensity is
large for the eigenstate of lower frequency but small for that of the upper frequency; the other
way is just the opposite. Here, Figs. 1(c) and (d) indicate the distribution of the electric field
magnitude |Ez | for the first and second bands at the K point of the Brillouin Zone. Considering
the distinct difference between the two distributions, we insert a rod with a larger permittivity
ε = 18.92 at the position shown in Fig. 1(e), where |Ez | is nearly the minimum and the maximum
in Figs. 1(c) and (d), respectively. Figure 1(f) shows how the normalized frequencies of the
first two bands at the K point vary with the permittivity of the inserted new material. The black
vertical line denotes the gap size before modification. The gray vertical line denotes the gap size
after the insertion of a material with ε = 18.92. The comparison clearly shows that the band gap
is decreased conspicuously after the insertion of the large permittivity. The gap size reaches the
minimum at nearly ε = 23. However, here, in order to keep a feasible range of the permittivity,
e.g. 1<ε<20 at the infrared frequencies, we have chosen ε = 18.92 instead. As long as there
exists a sufficient discrepancy between the distributions of the electric field intensity at the lower
and upper band edges, we can always reduce the band gap until the gap becomes negligible and a
Dirac point of accidental degeneracy is formed instead.

Figure 2(a) shows the optimized unit cell after a series of insertions of different materials.
The different color squares denote different permittivities, while the vertical sequence of the
squares denotes the order of insertion. More details of the engineering process are shown in the
Supplement 1. Figure 2(b) shows the normalized frequency of the lower and upper band edges of
the band gap at the K point, as a function of the permittivity of the last inserted rod (red circle in
Fig. 2(a)). Clearly, the band gap decreases to near zero at ε = 7.05. Figure 2(c) shows the final

Fig. 2. (a) Optimized unit structure after a series of insertions of different materials. The
different color squares denote different permittivities, while the vertical sequence of the
squares denotes the order of insertion. (b) Normalized frequencies of the band edges at
the K point as functions of the permittivity of last insertion. (c) Band diagram of the unit
cell shown in Fig. 2(a). (d) Three-dimensional dispersion surfaces near the Dirac point
frequency shown in Fig. 2(c).

https://doi.org/10.6084/m9.figshare.14619018


Research Article Vol. 29, No. 12 / 7 June 2021 / Optics Express 18074

band diagram of the optimized structure in Fig. 2(a), it can be clearly seen that the lower and
upper band edges at the K point turns into a Dirac cone, just like the original Dirac cone due to
the C6V symmetry, as shown in Fig. 1(a). Figure 2(d) shows the three-dimensional dispersion
surfaces near the Dirac point frequency shown in Fig. 2(c), which proves that a Dirac cone is
formed with Dirac linear dispersions in the vicinity.

Another way to break the symmetry in Fig. 1(a) is to alter the lattice of the photonic crystals,
e.g., by changing the angle between the lattice vectors to be 45° instead of 60°. This process
breaks the C6V symmetry of the triangular lattice. The band diagram is shown in Fig. 3(b),
where the Dirac point is changed into a band gap at the K point. By applying the same method
as discussed in Fig. 2, we show the optimized unit structure in Fig. 3(c). The different color
squares denote different permittivities, while the vertical sequence of the squares denotes the
order of insertion. In Fig. 3(d), we plot the band gap as a function of the permittivity of the last
insertion. Clearly, the band gap is closed around ε = 7.1. The band diagram of the optimized
structure is shown in Fig. 3(e), which demonstrates a reformed Dirac point at the K point due
to the accidental degeneracy. This is also verified in Fig. 3(f), where the three-dimensional
dispersion surfaces near the Dirac point frequency are plotted.

Fig. 3. (a) Breaking the C6V symmetry of a triangular lattice by changing the angle between
the lattice vectors to be 45°. The lattice constant is a. The cylinder has a permittivity ε = 1
and diameter R=0.6a. The background permittivity is ε = 7. (b) Band diagram of the unit
cell shown in Fig. 3(a) with the first Brillouin zone shown in the inset graph. (c) Optimized
unit structure after a series of insertions with different materials. The different color squares
denote different permittivities, while the vertical sequence of the squares denotes the order
of insertion. (d) Normalized frequencies of the band edges at the K point as functions of the
permittivity of the last insertion. (e) Band diagram of the unit cell shown in Fig. 3(c). (f)
Three-dimensional dispersion surfaces near the Dirac point frequency shown in Fig. 3(e).
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In the above examples, the reformed Dirac points and Dirac cones are all located at the K point,
which is a high-symmetry point in the Brillouin Zone. In fact, the position of the Dirac cones
induced by accidental degeneracy is not limited to such high-symmetry points and lines. In the
following, we demonstrate another example of the square lattice, and we create a Dirac point and
a Dirac cone at a k point that is deviated from the high-symmetry lines or points. The unit cell
of the original photonic crystal of a square lattice is shown in Fig. 4(a), the lattice constant is
a and the side length of the square pillar is 0.5a. The dielectric constants of the pillar and the
background are 7 and 1, respectively. Figure 4(b) shows the band diagram of the fourth and
fifth bands. Here, the point G denotes a point along the XM line, with XG=1/3XM. Therefore,
the line ΓG is inside the Brillouin Zone. Interestingly, we note that the lower and upper band
edges of the band gap is nearly located on the line of the ΓG, as marked by the red line in Fig.
4(b). The inset graph shows the Brillouin Zone. In Fig. 4(c), we show the optimized structure
after a series of insertions. The different color squares denote different permittivities, while the
vertical sequence of the squares denotes the order of insertion. In Fig. 4(d), we plot the band
gap as a function of the permittivity of the last insertion. Clearly, the band gap is closed around

Fig. 4. (a) A square lattice of square pillars with a lattice constant a, side length L=0.5a
and permittivity ε = 7.1 in a background with permittivity ε = 1. (b) Band diagram of the
unit cell shown in Fig. 4(a) with first Brillouin zone shown in the inset graph. Here, the
wave vector from the Γ point to a G point on the XM boundary is scanned. (c) Optimized
unit structures after a series of insertions of different materials. The different color squares
denote different permittivities, while the vertical sequence of the squares denotes the order of
insertion. (d) Normalized frequencies of the band edges at a point along the ΓG direction as
functions of the permittivity of the last insertion. (e) Band diagram of the unit cell shown in
Fig. 4(c). (f) Three-dimensional dispersion surfaces near the Dirac point frequency shown
in Fig. 4(e).
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ε = 6.98. The band diagram of the optimized structure is shown in Fig. 4(e), which demonstrates
a reformed Dirac point at the non-symmetry point, as induced by the accidental degeneracy. This
is also verified in Fig. 4(f), where the three-dimensional dispersion surfaces near the Dirac point
frequency are plotted.

3. Physical properties of the Dirac cones of accidental degeneracy

So far we have already demonstrated that Dirac points and Dirac cones can be induced by
creating accidental degeneracy according to a systematic method of band diagram engineering.
This method in principle works for arbitrary lattices and photonic crystals. In the following,
we demonstrate that the Dirac cones of accidental degeneracy have the same unique physical
properties as the symmetry-induced Dirac cones.

From the band diagrams and the three-dimensional dispersion surfaces shown in the corre-
sponding models, we can straightly observe the linear dispersion relations near the Dirac cone
as well as the degeneracy at the Dirac point. It is thus immediately inferred that such Dirac
cones induced by accidental degeneracy also possess a finite group velocity, which is vitally
important for the transmission of waves. It is well known that the Dirac conical dispersion
would lead to many interesting phenomena, such as the Zitterbewegung effect [25] and pseudo-
diffusive transmission [20,44]. It is thus beneficial to examine if the Dirac cones induced by
accidental degeneracy also possess similar unique physical properties. Here, we focus on the
pseudo-diffusive transmission that was previously demonstrated near the symmetry-induced
Dirac cones [20,44]. Pseudo-diffusive transmission is a signature of the conical singularity. Near
the Dirac point, the photon flux transmitted through a slab of photonic crystals is predicted
to scale inversely proportional to the thickness of the slab, i.e. G ∼ 1/L. The 1/L scaling is
called “pseudo-diffusive” due to its reminiscence of the diffusion through a disordered medium,
although here it appears for Bloch modes in the absence of any disorder inside the photonic
crystals.

In order to verify the pseudo-diffusive transmission, we investigate the photonic crystal array
with a width W and a thickness L, characterized as W×L. For the first model shown in Fig. 2(a),
the frequency of the Dirac point is f = 0.2827ωa/2πc. We consider a Gaussian wave incidence
alone the ΓK direction onto the photonic crystals array, which is shown in Fig. 5(a) with a
width of W = 40

√
3a. The photonic crystal array is about four times larger than the width of

the Gaussian beam, so as to avoid the diffraction induced by the array boundary. The photon
conductance G (the ratio between the total transmitted flux and incident photon flux) can be
numerically obtained along the ΓK direction. In Fig. 5(b), we plot the calculated G×L as a
function of the thickness L at f = 0.285ωa/2πc (near the Dirac point) in black square line. For
comparison, the G×L at the frequencies f = 0.25ωa/2πc and f = 0.23ωa/2πc is also plotted
in Fig. 5(b) in red circle line and blue triangle line, respectively. It can be seen clearly that at
the frequency f = 0.285ωa/2πc near the Dirac point, G×L oscillates around a constant value.
This indicates that the photon conductance is proportional to the inverse of array thickness,
which is a signature of the pseudo-diffusive transmission near the frequency of the Dirac point.
However, at the frequency f = 0.23ωa/2πc, the photon conductance G remains a constant and
G×L is a linearly ascending line with the array thickness L, i.e. the standard ballistic behavior
characteristics. The case of frequency f = 0.25ωa/2πc is between the two cases of the previous
frequencies.

We have also examined the case of the square lattice model shown in Fig. 4(c). The Dirac
point is at the frequency f = 0.694ωa/2πc. In this case, we consider an obliquely incident
Gaussian wave with θ=9.68° onto the photonic crystals array shown in Fig. 5(c) with a width
W = 40

√
3a. The incident angle is determined according to the wave vector of the Dirac point.

Figure 5(d) shows the product G×L as a function of the array thickness at f = 0.694ωa/2πc,
f = 0.692ωa/2πc and f = 0.681ωa/2πc, which is plotted in the black square line, red circle line
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Fig. 5. (a) Schematic picture depicting the simulation process for the model shown in Fig.
2(a). (b) The product of G and L as a function of the array thickness L at different normalized
frequencies shown with various colors and shapes. (c) Schematic picture depicting simulation
processes for model shown in Fig. 3(c). (d) The product of G and L as a function of array
thickness L at different normalized frequencies shown with various colors and shapes.

and blue triangle line, respectively. It can be seen clearly that the product G×L approximately
remains a constant at the Dirac point frequency f = 0.694ωa/2πc as well as the frequency near the
Dirac point f = 0.692ωa/2πc, which resemble the pseudo-diffusive transmission. While at the
frequency f = 0.681ωa/2πc away from the frequency of the Dirac point, the photon conductance
G remains a constant with the increase of thickness L, indicating a ballistic behavior in stark
contrast to the pseudo-diffusive behavior. Therefore, it is proved that the Dirac cones induced by
symmetry and accidental degeneracy exhibit the same characteristics. The Dirac cones formed in
the systems without symmetry also support the same physical effect as previously observed for
the Dirac cones in systems with C6V , C4V and mirror symmetries. We note that the observation of
the diffusive transmission is a signature of the conical dispersion in the vicinity of a near-perfect
degeneracy point.

4. Summary

Our method signifies that symmetries are not indispensable for the creation of Dirac points and
Dirac cones. Based on the approach of engineering accidental degeneracy, it is possible to turn a
band gap into a Dirac point and a Dirac cone, which were previously associated with the high
symmetries such as C6V , C4V and mirror symmetries. Therefore, our work indicates that the
physics related to Dirac cones can be extended to systems without symmetry.

In normal systems without symmetry, the anti-crossing phenomenon prevents the realization
of accidental degeneracy. Actually, in each step of our band engineering process, we have
also observed the anti-crossing phenomenon, as is shown in the Supplement 1. For each
insertion, tuning its parameter can reduce the band gap, but there is a minimal gap induced by
the anti-crossing. Interestingly, a new insertion can always be designed to further reduce the

https://doi.org/10.6084/m9.figshare.14619018
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band gap beyond the previous minimal gap. By adding an infinite number of insertions, the band
gap in principle can eventually become infinitesimal, i.e. achieving the accidental degeneracy.
At the occurrence of degeneracy, the orthogonality between the eigenstates is not protected by
symmetry, but induced by the series of modification made to the photonic system according to
the eigenstates.

Comparing with the previous Dirac-like cones induced by accidental degeneracy that exhibit
additional flat bands [15], the Dirac cones obtained here is free of the flat dispersions and thus is
more similar to the Dirac cones extensively discussed in Graphene et al. We note that the previous
Dirac-like cone requires the system to have the C6V or C4V symmetry, otherwise the Dirac-like
point would turn into the semi-Dirac point at the accidental degeneracy [45]. This stringent
demand in symmetry is removed in our system. Moreover, unlike the previous Dirac-like cone at
the Brillouin Zone center, here the Dirac cone is not limited to the Brillouin Zone center, or any
high symmetry points or lines, and can in principle appear at any place inside the Brillouin Zone.
This attributes to the accidental degeneracy in the designed photonic crystal without symmetry.
The free position of the Dirac cone beyond the high symmetry points and lines in the Brillouin
Zone can provide more degrees of freedoms for the Dirac cone physics.

It has been found that accidental degeneracy is sometimes associated with the so-called hidden
symmetry [46,47], which is mathematically defined in the Hamiltonian model of the system
near the degeneracy point. Here, the symmetry of photonic crystals refers to more common
space symmetries, such as the rotational symmetry, mirror symmetry, etc. The photonic crystals
demonstrated here have only periodicity and no other space symmetries.

In conclusion, we have created Dirac cones at different k points in the reciprocal space by
designing photonic crystals without symmetry. The degeneracy in the Dirac point is formed
by an accidental set of system parameters, which can be obtained through a method of band
diagram engineering according to the eigenstates. Under such circumstances, Dirac conical
dispersions are formed around the Dirac point, which extends the important physics of Dirac
conical dispersions to more general systems without symmetry.
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