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Abstract: Edge-mode graphene plasmons (EGPs) supported by graphene nanoribbons are
highly confined, and they can show versatile tunability under electrostatic bias. In order to
efficiently enhance and actively control the near-field intensity in integrated plasmonic devices, we
theoretically study Anderson localization of EGPs in a graphene nanoribbon with an underlying
electrode array in this work. By randomly arranging the electrodes in the array, positional disorder
is introduced in the graphene nanoribbon system. Consequently, the Anderson localization of
EGPs occurs with an exponentially decreased electric field, reduced propagation length, and rapid
disappearance of the cross-correlation coefficient. Physically, inhomogeneous gating effectively
creates a disordered distribution of Fermi levels in the graphene nanoribbon, which provides
adequate fluctuation of the effective refractive index and results in strong localization of the EGPs
at mid-infrared regime. By changing electrode array arrangements, the EGPs can be trapped
at distinct locations in the nanoribbon. Further considering that the Fermi-level disorder can
be introduced by randomly modulating the electrostatic bias, we apply different gate voltages
at different electrodes in the array. Electrically tunable Anderson localization of EGPs are
eventually realized in those randomly gated nanoribbons. Moreover, by combining both the
positional and Fermi-level disorders in the system, the Anderson localization becomes more
actively controlled in this electrically gated graphene nanoribbons. It is shown that the local field
can be selectively trapped at single distinct location, or even several locations along the graphene
nanoribbon. This investigation extends the Anderson localization to the EGPs in the mid-infrared
range and enriches the graphene-based active plasmonic devices.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Graphene plasmons, which feature the collective excitations of two-dimensional massless
electrons, are rapidly emerging as a viable approach for the fast manipulation of light [1,2].
At terahertz and mid-infrared ranges, graphene behaves as a one-atom-thick “metal” that can
support highly confined graphene surface plasmons [1–6]. Compared to the surface plasmons
in conventional plasmonic materials, such as silver and gold, graphene plasmons possess the
following advantageous characters: (i) relatively low dissipative losses, owing to the relatively
large conductivity of graphene [4,5]; (ii) extremely small spatial extension compared to the light
wavelength, which can stimulate a strong localized optical field and create significantly enhanced
light-matter interactions; and (iii) capability of being dynamically tuned via chemical doping [7]
or electrostatic gating [8–10]. To further facilitate the field localization of graphene plasmons,
various methods have been proposed, such as designing graphene nanostructures [11,12] and
introducing plasmonic metasurfaces [13]. The unique optoelectronic properties make graphene
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the promising candidate for active plasmonic devices, such as sensors [14,15], modulators [16,17],
transformation optical devices [1], integrated photonic circuits [18], and nonlinear devices [19].

Finite-sized graphene geometries, such as graphene nanoribbons, can possess all the advantages
noted above and present unique features [20–22]. A graphene nanoribbon can support edge-mode
graphene plasmons (EGPs) with the local field concentrated near the boundaries of the nanoribbon.
This leads to strong confinement both vertically and laterally, and therefore, allows functions in
sensors [23], couplers [24], filters [25] and logic gates [26]. Several approaches have been made
to manipulate EGPs, such as altering the shapes or boundaries of the graphene nanostructures
[12,27,28], modulating the local dielectric environment [13] and the local doping condition
[23,29]. However, further compression of the EGPs in a controlled manner is required specifically
in integrated plasmonic devices.
It is well known that Anderson localization, which originates from interference of coherent

waves, can significantly confine electromagnetic waves [30–38]. Initially the localization of
waves was investigated by Anderson in 1958, which predicts that an electron may become
immobile when placed in a disordered lattice [39]. Since then, the Anderson localization has
been extensively studied, and it has been extended from an electron to other waves, including
matter waves [40], acoustic waves [41], and electromagnetic waves [30–38]. In the optical
analogy of Anderson localization, the occurrence of strong localization can be characterized
by exponentially decayed local fields [30,33,36], significantly decreased propagation lengths
[36] and small correlation coefficients [30]. To date, Anderson localization of light has been
successfully observed in optical systems such as disordered photonic lattices [34,35] and coupled
waveguide arrays [36], stimulating applications in imaging [42], light harvesting [43,44] and
random lasing [45,46]. Recently, using disordered nanogratings, strong localization of surface
plasmon polaritons at silver film has been experimentally observed in the visible range [47].
However, the difficulty of altering the permittivity functions of noble metals and the existence of
large energy losses at visible wavelengths constrain the efficiency and tunability of plasmonic
devices. To circumvent these problems, Anderson localization of graphene plasmons has been
proposed [48–50]. Both localized and propagating modes can be trapped in randomly modulated
graphene sheets. However, to the best of our knowledge, there have been no prior studies on
the Anderson localization of edge-mode plasmons in graphene nanoribbons and its tunability.
Naturally it is worthwhile to explore the Anderson localization of edge-mode graphene plasmons
(i.e., EGPs).

In this work, we theoretically investigate Anderson localization of EGPs in a graphene
nanoribbon with the underlying electrode array. By randomly arranging the electrodes in the
array, positional disorder can be introduced in the system. As a result, strong localization of
EGPs occurs with an exponentially decreased electric field, reduced propagation length and
rapid disappearance of the cross-correlation coefficient. Physically, based on electric-field effect,
the disordered electrode array can effectively create desired Fermi-level patterns in a graphene
nanoribbon, which provide adequate fluctuation of the effective refractive index. When EGPs
propagate along the graphene nanoribbon, some of the waves can tunnel through the randomly
gated regions, while others are localized around them. Therefore, Anderson localization of EGPs
occurs when the degree of positional disorder is increased. By changing the array arrangements,
it is observed that the EGPs can be trapped at distinct positions. Besides, the Fermi-level disorder
can be introduced by randomly modulating the electrostatic bias. To achieve this, different gate
voltages are applied to different electrode in the array. This configuration leads to the electrically
tunable Anderson localization of EGPs. Moreover, when considering the combination of both the
positional and Fermi-level disorders, the Anderson localization can be more effectively controlled.
Notably, the local electric field can be selectively trapped at one or several distinct positions
along the graphene nanoribbon. This study extends the Anderson localization to the EGPs in the
mid-infrared range, and provides insight into the active graphene-based plasmonic devices.
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2. Edge-mode graphene plasmons in a gated graphene nanoribbon

Firstly, we consider the propagating EGPs along a gated graphene nanoribbon. The structure
consists of a graphene nanoribbon (of width 150 nm) on top of a silicon substrate with a metallic
ground plate, separated by a dielectric spacer layer with refractive index n= 2, as shown in
Fig. 1(a). The EGPs (denoted by purple arrows) enter the graphene nanoribbon from the left
side and propagate along the x-direction. Based on the finite-difference time-domain (FDTD)
methods, we carried out the numerical simulation on the transportation of the EGPs in the
graphene nanoribbon by using a commercial software package (Lumerical, FDTD Solutions). In
our simulations, the thickness of the dielectric spacer is set to 400 nm. We use perfectly matched
layer (PML) boundary conditions in all directions, and the mesh is set as 0.5 nm in x- and y-
directions, and 2.5 nm in z-direction.

Fig. 1. (a) Schematic of a propagating EGP (denoted by purple arrows) in a gated graphene
nanoribbon on the substrate. The monolayer graphene nanoribbon has a width of 150 nm
and is atop a silicon substrate with a metallic ground plate, separated by a dielectric spacer
layer (n= 2). The Fermi level of the graphene nanoribbon is EF0 and can be tuned through
an external electrostatic bias. The left inset shows the electric-field profile of the mode
source employed in simulations at f = 30 THz, which is calculated using the integrated mode
solver in FDTD Solutions. (b) Calculated intensity and the z-component of the electric field
of EGP at f = 30 THz, when EF0 is 0.5 eV, plotted in the x-y plane.

In the simulations performed in this study, the optical conductivity of the monolayer graphene
was numerically modeled using Kubo formula. This formalism consists of two parts, i.e., the
interband and intraband contributions, in the following equation [51,52]:
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where ω is the photon frequency in a vacuum, EF is the Fermi level of the graphene, Γ is the
scattering rate, and θ = (~ω − 2EF) presents the step function. The scattering rate is assumed to
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be Γ= 0.11meV based on the theoretical estimation of the maximum mobility in graphene [53].
When the imaginary part of the graphene conductivity attains positive values in the terahertz
and mid-infrared frequencies, the graphene layer effectively behaves as a very thin “metal” layer
capable of supporting transverse-magnetic (TM) electromagnetic surface waves. The dispersion
relation of the TM-polarized plasmonic waves for the graphene is expressed as [1,54]

β2 = k02[1 − (2/η0σ)2], (2)

where β and k0 are, respectively, the wave vectors in the graphene and free space, and η0
is the intrinsic impedance of the free space. The effective refractive index of the plasmonic
mode satisfies neff =Re(β) / k0. Therefore, the optical conductivity of the graphene is strongly
dependent of the Fermi level (EF), which can be electrostatically tuned, thus, resulting in dramatic
changes in the effective refractive index (neff ). This provides a tool for electrically switching the
propagation properties of the graphene plasmons.

For graphene nanoribbons, the interdependence between the effective refractive index and the
Fermi level of graphene still holds. Previous works have found that graphene nanoribbons can
support two types of plasmonic modes, i.e. the waveguide mode with the field concentrated along
the entire nanoribbon, and the edge mode with the field concentrated near the boundaries of the
nanoribbon [20,21]. The latter has even lower propagation losses and higher field confinements.
To effectively excite the EGPs in the graphene nanoribbon, the Fermi level of the graphene
nanoribbon was set as EF0= 0.5 eV. The TM-polarized EGPs were launched from a mode source
located at the left of the simulation space at f= 30 THz, which was calculated using the integrated
mode solver in FDTD Solutions. The inset in Fig. 1(a) shows the side-view electric-field
distribution of the mode source in the simulations. When the mode source is applied, EGPs
are injected in the x-direction with effective refractive index neff = 54.5+ i0.09. This highly
compressed mode offers an effective wavelength λeff = 182.65 nm, and a propagation length of
L= 26.47 µm. Therefore, the EGPs have a wavelength two orders of magnitude smaller than that
of the incident wavelength, and they can propagate several tens of micrometers before being
attenuated. Figure 1(b) shows the calculated intensity and z-component of the electric field
in the x-y plane. It is found that the local field is indeed highly constrained to the rims of the
nanoribbon, and it preserves its propagation features after traveling along the entire simulation
space. If the Fermi level of graphene is changed to EF0= 0.4 eV and other parameters remain the
same, neff of the EGPs is changed to 67.5+ i0.12, with an effective wavelength of 147.47 nm and
a propagation length of 21.16 µm. The propagation length is further decreased to 10.67 µm when
EF0= 0.2 eV. Thus, by altering the Fermi level of graphene, the effective refractive index, and
hence the EGP waves in graphene nanoribbons can be modulated.

3. Realizing Anderson localization of EGPs with positional disorder

3.1. Structural design, simulation results, and theoretical analysis

Now we try to engineer the EGPs in the graphene nanoribbon by changing the electrode in
the system. Instead of using a uniform metallic ground plate, here we place an electrode array
underneath the graphene nanoribbon. In this configuration, the electrostatic bias can be spatially
varied. As shown in Fig. 2(a), an array of gold parallel bar-electrodes is placed at the bottom
of the substrate, and the TM-polarized EGPs are launched on the left side in the x-direction,
while gate voltage Vg is applied to all the electrodes. It is known that the Fermi level of graphene
can be changed using the applied gate voltage (Vg) [22]. Therefore, by randomly arranging
the electrodes, a disordered gated-stripes array can be created across the graphene nanoribbon.
This effectively forms a desired Fermi-level pattern, which provides adequate fluctuation of the
effective refractive index (neff ), and induces sufficiently strong interference between multiple
scattering EGPs. Based on this, the propagation features of EGPs can be affected and Anderson
localization of EGPs may occur while increasing the disorder degree.
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Fig. 2. (a) Schematic of a propagating EGP in a graphene nanoribbon, with an array of
electrodes at the bottom. Gate voltage Vg is applied to all electrodes. Therefore, according
to the electrode arrangements, an array of gated stripes form a certain Fermi-level pattern
across the graphene nanoribbon. (b) Fermi-level patterns across the graphene nanoribbon
with different positional disorder degrees, ranging from η= 0% to η= 80%, respectively.
EF0 (EF1) is the Fermi level of graphene segments without (with) the electrodes underneath,
denoted by gray (red). The dielectric spacer layer is marked with light blue. Each array
pattern consists of 15 stripes, with period p= 30 nm and stripe width w= 10 nm. (c)
Calculated electric-field distribution of the EGPs at f= 30 THz. The disorder degree are
changed from η= 0% to η= 80% corresponding to (b).

The positional disorder degree η is denoted by perturbing the position of each stripe as η=∆x /
p. Here, p is the array period and ∆x is the random deviation of each stripe from its periodic
arrangement. Thus, for a disordered array with η, the position of the ith stripe in the array follows
xi = ip+ ηp(r - 0.5), where r is a uniform random number between 0 and 1. The analysis was
restricted to an array consisting of 15 stripes. The period and width of the stripes were set to
p= 30 nm and w= 10 nm, respectively. The Fermi level of the gated graphene stripes were set
to EF1= 0.25 eV, whereas the rest was set to EF0= 0.5 eV, depicted with red and gray colors in
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Fig. 2(a). Figure 2(b) shows the Fermi-level patterns with five degrees of η, varying between 0%
and 80%.

The calculated field distributions of the EGPs at f= 30 THz with different positional disorder
degrees are shown in Fig. 2(c). For η= 0%, the EGPs are excited on the edge of the graphene
nanoribbon and propagate along the x-direction. The local field intensity scarcely decreases after
travelling along the entire structure. However, when η increases from 20% to 80%, the electric
field gradually shrinks, and the propagation length dramatically decreases. Above the threshold
of η= 40%, the propagation features of the EGPs almost disappear. Meanwhile, the local field
intensity is enhanced owing to the conservation of energy.
To better manifest the localization of the EGPs along the direction of propagation, the field

intensity near the boundaries of the nanoribbon was integrated along y direction. Figure 3(a)
shows the integrated field distributions with η= 0–80%. In the periodic structure (η= 0%), the
frequent oscillations of the localized EGPs can be clearly observed around the gated stripes. The
intensity undergoes negligible losses along the entire graphene nanoribbon. On the contrary,
when the disorder degree increases, the field exponentially decreases, followed by an enhancement
of the local field intensity. Therefore, the Anderson localization of the EGPs occurs in the
graphene nanoribbon via modulation of the spatial distribution of the electric field bias.

Fig. 3. (a) Integrated electric-field intensity along y-direction near the edge of the nanoribbon
at f= 30 THz, plotted as a function of x. The positional disorder degree increased from
η= 0% to η= 80%. (b) Calculated effective propagation length Leff as a function of η, and
the values were averaged over 10 structures with different array arrangements. (c) Calculated
cross-correlation coefficients Cij between the periodic structure and disordered structures,
plotted as a function of η.

Attempts are then made to quantitatively study the Anderson localization of the EGPs with
positional disorder. For each disordered structure, the inverse participation ratio is expressed as
[47]

P =
∫

f 2(x)dx
/ (∫

f (x)dx
)2

(3)

where f (x) denotes the electric-field intensity. The effective propagation length Leff =〈1/P〉
(where 〈. . .〉 stands for averaging over multiple structures with different array arrangements) is
plotted as a function of the positional disorder degree in Fig. 3(b). Leff is approximately 460 nm
in the periodic structure and decreases to approximately 300 nm when η= 80%. Additionally, it
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is known that cross correlation is used to describe the degree of overlap between two different
patterns [55]. It provides information about the similarity of the shape regardless of the average
intensity of the signals. Here, cross-correlation coefficient Cij is calculated from [56]

Cij =
Cov(fi, fj)
σiσj

, (4)

where fi and fj denote the field distribution of the periodic and disordered structures, respectively.
In this equation, Cov (fi, fj) is the covariance of fi and fj ; and σi and σj represent the respective
standard deviations of fi and fj. In general, the normalized cross-correlation coefficient, Cij, ranges
from 0 to 1, and can be interpreted as the degree of overlap between the periodic and disordered
structures. The calculated Cij is shown in Fig. 3(c) as a function of disorder degree. It is found
that Cij equals to 1 when η= 0%, following which it drops sharply below approximately 0.4 when
η surpasses 60% and converges to a constant at a larger disorder degree. As a result, Anderson
localization of EGPs indeed appears in the graphene nanoribbon when increasing the positional
disorder degree. The strong localization is represented by the exponentially decreased local field,
reduced propagation length and rapid disappearance of the cross-correlation coefficient.

3.2. Anderson localization in different electrode array arrangements

Naturally we can design different electrode array arrangements under the same positional disorder,
and trap the EGPs at different local positions by changing the array arrangements. In Fig. 4(a),
three different array arrangements (S1, S2, and S3) are illustrated with the same positional
disorder degree η= 80%, while the other parameters remain unchanged. Figure 4(b) shows
the calculated field distribution of EGP waves at f= 30 THz. The calculated cross-correlation
coefficient Cij equals to 0.43, 0.41 and 0.39 for S1, S2 and S3, respectively, manifesting that
the Anderson localization emerges in all three structures. However, EGP waves are trapped at
different positions. From S1 to S3, respectively, the localized EGPs appear on the left, middle and

Fig. 4. (a) Illustration of the three selected arrangements of the Fermi-level patterns with
positional disorder degree η= 80%, denoted by S1, S2, and S3, respectively. EF0 (EF1) is
the Fermi level of graphene segments without (with) the underneath electrodes, denoted by
gray (red). (b) Calculated electric-field distribution of the EGPs at f= 30 THz, corresponding
to the three patterns shown in (a). (c) Integrated electric-field intensity along y-direction
near the edge of the nanoribbon, plotted as a function of x. The localization positions in S1,
S2, S3 are marked with green, red and blue, respectively.
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right of the graphene nanoribbon. The integrated field distributions, shown in Fig. 4(c), give a
similar but clearer result to that in Fig. 4(b). By fitting the curves in Fig. 4(c) with Gaussian peaks,
it is observed that the local field intensity peak at x1= 77.8 nm, x2= 232.6 nm and x3= 384.3 nm
for S1, S2, and S3, respectively. Each has a full width at half maximum (FWHM) of 34.7 nm,
37.1 nm, and 34.1 nm, showing similar degrees of localization.

Normally, in disordered metal structures, surface plasmonic waves are localized to the launch
site owing to the high energy losses at visible frequencies [46]. However, EGPs undergo relatively
low energy losses in the mid-infrared range. Therefore, the localization can occur at entirely
different positions along the graphene nanoribbon. These observations imply that the energy can
be selectively trapped in the graphene nanoribbon.

4. Tuning Anderson localization of EGPs with Fermi-level disorder

Apart from altering the arrangements of the electrode array, the disorder can also be introduced
by randomly modulating the electrostatic bias, or equivalently, the Fermi level of graphene.
As shown in Fig. 5(a), based on the periodic array arrangements, different gate voltages Vi
(i= 1–n) are applied to different electrodes. Hence, each gated stripe across the graphene
nanoribbon has different Fermi energy based on Vi, as depicted by the color scale from white to
red in Fig. 5(a). Similarly, the propagating EGPs along the graphene nanoribbon can sense the

Fig. 5. (a) Schematic of a propagating EGP in a graphene nanoribbon with a periodic array
of electrodes at the bottom. Different gate voltages, varying from V1 to Vn are applied to
each electrode. (b) Fermi-level patterns across the graphene nanoribbon with Fermi-level
disorder degree δ = 20% and 40%. The Fermi level of the gated graphene stripes EF1 are
depicted by the color scale from white to red. (c) Calculated electric-field distribution of the
EGPs at f= 30 THz, corresponding to the patterns shown in (b). (d) Integrated electric-field
intensity along y-direction near the edge of the nanoribbon, plotted as a function of x. Inset
is the effective propagation length Leff , as the function of Fermi-level disorder degree.
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disordered fluctuation of the effective refractive index, resulting in the occurrence of actively
controllable Anderson localization. Here, the Fermi-level disorder degree is defined as δ =∆EF1 /
Econst, where Econst is set to a constant 0.25 eV. This indicates that the Fermi level of each gated
graphene stripe (EF1) has a random deviation ∆EF1 from Econst.

Figure 5(b) illustrates the Fermi-level patterns with δ= 20% and 40%. EF1 ranges from 0.2 eV
to 0.3 eV for δ= 20%, and from 0.15 eV to 0.35 eV for δ= 40%, depicted by the color scale from
white to red in Fig. 5(b). Figure 5(c) shows the calculated field distribution of EGPs at f= 30 THz
along the x-direction. Notably, the Anderson localization occurs when increasing the Fermi-level
disorder. The integrated electric-field distributions of the two structures, δ= 20% and 40%,
are plotted using yellow and blue in Fig. 5(d). It is seen that when the Fermi-level disorder
increases, the EGP modes are highly compressed, followed by an exponential decreased in the
field, remarkable enhancement in the local field intensity and relatively small cross-correlation
coefficient Cij (calculated as 0.25 when δ= 40%). The inset in Fig. 5(d) shows the effective
propagation length, Leff , as a function of Fermi-level disorder. Leff rapidly drops below 90 nm
when δ increases to 40%, approximately one third of the value obtained from the passive strategy
used in the previous section. Thus, the Anderson localization of EGPs is successfully realized in
the gated graphene nanoribbon by electrostatically introducing the Fermi-level disorder.

5. Tuning Anderson localization of EGPs with both positional and Fermi-level
disorders

Now we are ready to combine both the positional and Fermi-level disorders, and try to control
more effectively the Anderson localization of the EGPs in the electrically gated graphene
nanoribbons. As illustrated in Fig. 6(a), the position and applied gate voltage of each electrode
in the array can be altered simultaneously. Three different patterns of the Fermi level, denoted
by S4, S5, and S6, respectively, are shown in Fig. 6(b). Each has a positional disorder degree
of η= 80%, and Fermi-level disorder degree of δ= 40%, while the other parameters remain
unchanged. Figure 6(c) shows the calculated field distribution of the EGPs at f= 30 THz. Here,
the relatively small value of calculated cross-correlation coefficient Cij in S4–S6 (equals to
0.15, 0.13 and 0.24 for S4, S5 and S6, respectively) verify that the occurrence of the Anderson
localization of EGPs. In Fig. 6(c), from S4 to S6, the EGPs are found to be localized at on the left,
middle, and right of the graphene nanoribbon, respectively. Compared to S1–S3 in Fig. 4, the
local field intensity of S4–S6 are more enhanced and localized. In Fig. 6(d), the integrated field
distributions show the local field intensity peak at x4= 67.1 nm, x5= 174.8 nm and x6= 410.2 nm
along the x-direction in S4, S5 and S6, respectively. The calculated FWHM is 11.8 nm, 21.6 nm
and 16.6 nm, respectively, almost half of the S1–S3 values. The decrease of the FWHM indicates
that the EGPs are further localized when combining the two types of disorder.
Moreover, by tuning the position and applied gate voltage of each electrode in the electrode

array, the EGPs can be trapped at several different positions in the same graphene nanoribbon.
Figure 7(a) illustrates two arrangements of the Fermi level, S7 and S8, using the same parameters
as in Fig. 6(a). Both have positional disorder degree η= 80% and Fermi-level disorder degree
δ= 40%. The calculated field distribution and integrated field intensities, respectively, of EGPs
at f= 30 THz are plotted in Figs. 7(b) and (c). Strong localization appears with the calculated
cross-correlation coefficient Cij of 0.23 and 0.26 for S7 and S8, respectively. Additionally, it can
be seen that the EGPs are localized at two (three) distinct positions in S7 (S8). In S7, the local
field peaks at x7= 55.2 nm and 182.3 nm, with the FWHM of 13.3 nm and 26.9 nm. In S8, the
local field peaks at x8= 53.8 nm, 260.5 nm and 327.9 nm, with the FWHM of 30.1 nm, 28.3 nm
and 22.2 nm. These results imply that energy can be in-plane selectively trapped at single or
multiple positions. This offers more possibilities for controlled light trapping. Thus, it is clear
that by combining both the positional and Fermi-level disorders, the Anderson localization of
EGPs in the gated graphene nanoribbon can be more effectively controlled and functionalized.
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Fig. 6. (a) Schematic of a propagating EGP in a graphene nanoribbon, with a disordered 
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patterns, denoted by S4, S5, and S6, respectively, with positional disorder degree η = 80% 
and Fermi-level disorder degree δ = 40%. (c) Calculated electric-field distribution of the 
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intensity along y-direction near the edge of the nanoribbon, plotted as a function of x. The 
localization positions in S4, S5, S6 are marked with yellow, green and blue respectively. 
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denoted with S7 and S8. The Fermi level of the gated graphene stripes EF1 are depicted by 
different colors, from white to red. (b) Calculated electric-field distribution of the EGPs at f 
= 30 THz, corresponding to the patterns shown in (a). (c) Integrated electric-field intensity 
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positions in S7 and S8 are marked with blue and purple. 
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Fig. 8. (a) Fermi-level patterns across the graphene nanoribbon with positional disorder
degree η= 80% and Fermi-level disorder degree δ= 40%, denoted with S9 and S10. The
Fermi level of the gated graphene stripes EF1 are depicted by different colors, from white to
red. (b) Calculated electric-field distribution of the EGPs at f= 30 THz, corresponding to
the patterns shown in (a). (c) Integrated electric-field intensity along y-direction near the
edge of the nanoribbon, plotted as a function of x. S9, S10 and their localization positions
are marked with purple and blue.

It is worthwhile to mention that the relatively small dimension of the graphene stripes (width
of 10 nm) may cause quantum effects, and doping of the graphene under such dimension may be
challenging if we concern real-world fabrication. To match the present dimensions of the devices
which are practically achievable in experiments [57,58], here we enlarge the period and width
of the gated-stripes array to p= 150 nm and w= 50 nm, respectively, while the other geometric
parameters remain unchanged. The Fermi level of graphene was set to EF0= 0.6 eV, and Econst was
set to 0.4 eV. In Fig. 8(a), we show two Fermi-level patterns S9 and S10 with positional disorder
degree η= 80% and Fermi-level disorder degree δ= 40%. The calculated field distributions and
integrated field intensities, respectively, of EGPs at f= 30 THz are plotted in Figs. 8(b) and (c).
Strong localization of EGPs are observed with the calculated cross-correlation coefficient Cij of
0.30 and 0.34 for S9 and S10, respectively. In S9, the EGPs are localized at x9= 1436.1 nm with
FWHM of 18.2 nm. In S10, the EGPs are localized at x10= 192.6 nm, 471.6 nm and 902.7 nm,
with FWHM of 16.3 nm, 16.1 nm and 17.2 nm, respectively. Thus, it is possible to realize the
tunable Anderson localization of EGPs when enlarging the size of the gated-stripes array.

6. Conclusions

In this work, the Anderson localization of EGPs has been numerically studied along a graphene
nanoribbon with an underlying electrode array in the mid-infrared range. By randomly arranging
the electrodes in the array, we successfully introduce positional disorder in the system. As a
result, the Anderson localization of the EGPs occurs with the exponentially decreased electric
field, reduced propagation length, and rapid disappearance of the cross-correlation coefficient.
Physically, the inhomogeneous gating provides adequate fluctuation of the effective refractive
index. The superposition of multiple EGPs generated by the disorder leads to the Anderson
localization of the EGPs. In different array arrangements, it is observed that the EGPs can be
trapped at distinct positions owing to their low energy losses. Besides, Fermi-level disorder
can be introduced by randomly modulating the electrostatic bias. To achieve this, different gate
voltages are applied to different electrodes in the array. Hence, electrically tunable Anderson
localization of the EGPs occurs. Moreover, by combining both the positional and Fermi-level
disorders, the Anderson localization of the EGPs can be more effectively controlled in this
randomly gated graphene nanoribbon. It is shown that local near-field intensity can be selectively
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trapped at one or several distinct positions. The theoretical study of the Anderson localization
of EGPs herein suggests that graphene can be a low-loss one-atom-thick platform for active
plasmonic applications, and it could stimulate tunable light trapping and controllable light-matter
interactions.
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