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Bijvoet pair’s intensity ratio: Convergence of kinematic and dynamical diffraction
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Anomalous diffraction of Bijvoet pairs (BPs) is a fundamental method of structure analyses in crystallography.
We demonstrate that the diffraction intensity ratio of a BP always intrinsically equals the two structure factors’
squared modulus ratio instead of the modulus ratio that has been believed to govern dynamical diffraction.
High-resolution experiments of perfect quartz precisely proved this principle in pure dynamical diffraction. The
underlying mechanism is that the elementary diffraction functions of BPs always obey the squared modulus ratio
rule, which is universally valid for both kinematical and dynamical diffraction in any diffraction geometry. This
fundamental mechanism clarifies one of the long-lasting ambiguities in x-ray crystallography and paves the way
for various applications of high-resolution diffraction of BPs, particularly for large high-quality crystals.
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The intensity of x-ray diffraction from crystals depends on
the structure factor modulus, |F (H)|, where H is the Bragg
reflection vector. For crystals with centrosymmetry, |F (H)| ≡
|F (−H)|, where −H is the opposite reflection. Consequently,
the diffraction intensities of H and −H are identical, which
is Friedel’s law. For crystals without centrosymmetry, anoma-
lous scattering can lead to |F (H)| �= |F (−H)|. Then Friedel’s
law is broken and the two opposite reflections may produce
different intensities. Here H and −H are called a Friedel
pair [Fig. 1(a)] or, more generally, a Bijvoet pair (BP) if
symmetry-equivalent reflections are included [1]. Accurate
measurements of BP intensities are of fundamental impor-
tance for solving phases in structure analyses [2,3], for
determining the absolute structures of molecules (chirality,
handedness, and polarity) [4–8], for verifying the theoretical
dispersion corrections to atomic scattering factors [9], for
resonance spectroscopy, for observation of domains and po-
larization switching in (multi)ferroics [6,10–12], and for many
other applications.

However, it is well known that there are two distinct prin-
ciples governing x-ray diffraction [13]. One is the kinematical
diffraction principle for small or highly imperfect crystals,
where the integrated diffraction intensity I (H) is proportional
to |F (H)|2. The other is dynamical diffraction for large perfect
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crystals, where I (H) is only proportional to |F (H)|. Hence, it
seems that the diffraction intensity ratio of a BP should be

I (H)

I (−H)
= |F (H)|2

|F (−H)|2 (1)

for small or imperfect crystals and

I (H)

I (−H)
= |F (H)|

|F (−H)| (2)

for large perfect crystals. The difference between Eqs. (1)
and (2) can be remarkable. If it were true, its influence could
be felt in most sectors of crystallography. Although many
phasing methods using BPs are for small biological crystals
that are believed to be dominated by kinematical diffraction,
in fact, there is no clear boundary between kinematical and
dynamical diffraction. Particularly in the reflection geometry,
x-ray penetration can be only a few tens of micrometers due to
extinction, and diffraction from such crystals can be a mixed
kinematical and dynamical diffraction process.

Nevertheless, the classical dynamical theory has already
indicated that Eq. (1) may be valid even in dynamical diffrac-
tion (e.g., [14–16]), but this conclusion was trivially derived
or described in very complex or misleading formulas, which
are further complicated by various scenarios (such as absorp-
tion and nonabsorption crystals, integrated or nonintegrated
intensities, different diffraction geometries, etc.), resulting in
much confusion in the literature. On the other hand, since the
proportionality I (H) ∝ |F (H)| in dynamical diffraction has
been dominantly accepted, therefore, it is still widely believed
that Eq. (2) is valid for large perfect crystals [6,17,18], and
that for relatively small crystals, I (H)/I (−H) could take some
intermediate values between Eqs. (1) and (2) [19].

In this paper, we use both high-resolution experiments
and simple but systematic formulas to demonstrate that
I (H)/I (−H) strictly follows Eq. (1) in both dynamical and
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FIG. 1. (a) X-ray diffraction of BPs in the same geometry. ϕ is
the asymmetric angle (ϕ = 0 for symmetric reflection). θ = ω + ϕ.
(b) Theoretical Darwin curves of the 2̄42̄2̄/24̄22 BP of right-handed
quartz with the same Bragg angle θB = 43.54◦. Both the peak re-
flectivity ratio and the integrated intensity ratio are 0.386/0.245 =
1.58. (c) 1̄21̄1̄/12̄11 BP with θB = 20.15◦. The intensity ratio is
0.720/0.867 = 0.83. ϕ = 0, σ polarization (for all simulations in
this paper).

kinematical diffraction, thus clarifying one of the long-lasting
ambiguities in x-ray crystallography. This is particularly im-
portant for anomalous diffraction of nearly perfect large
crystals that can achieve much higher resolution and reliability
than small crystals. The related techniques can thus be used to
accurately study various fundamental physics and have many
practical applications.

We study right-handed noncentrosymmetric α quartz,
which belongs to the trigonal crystal system with space groups
P3221 (no. 154). In the right-handed hexagonal coordinate
system, the unit cell contains three Si atoms at (u, 0, 0),
(−u,−u, 1/3), and (0, u, 2/3) and six O atoms at (x, y, z),
(y, x, 2/3 − z), (−y, x − y, 2/3 + z), (−x, y − x, 1/3 − z),
(y − x,−x, 1/3 + z), and (x − y,−y,−z), where u = 0.4699,
x = 0.4141, y = 0.2681, and z = 0.1188. The lattice con-
stants are a = b = 4.9134 Å, c = 5.4052 Å, α = β = 90◦,
and γ = 120◦. The Debye temperatures of the Si and O atoms
are 517 and 476 K, respectively [20,21]. The anomalous scat-
tering factor f ′

Si + i f ′′
Si of Si has appreciable values in the

energy range E � 14 keV (while negligible for the O atoms).
For instance, at E = 8.05 keV, f ′

Si + i f ′′
Si = 0.297 + i0.325

(electrons), and it increases with decreasing E (e.g., f ′
Si +

i f ′′
Si = 0.42 + i0.795 at E = 5 keV). f ′

Si + i f ′′
Si can cause some

BPs of quartz to have significantly different structure factor
moduli.

For example, at E = 8.05 keV, the structure factors
of reflection H = 2̄42̄2̄ and its opposite reflection

−H = 24̄22 are F (H) = −0.454 + i1.615 and F (−H) =
−0.717 − i1.983, respectively, with |F (H)/F (−H)|2 = 1.58
and |F (H)/F (−H)| = 1.26. For the base reflections, the
two structure factors are F (H = 1̄21̄1̄) = 6.94 − i7.47 and
F (−H = 12̄11) = 5.95 + i7.14 with |F (H)/F (−H)|2 =
0.831 and |F (H)/F (−H)| = 0.911. Based on these structure
factors, we have calculated the corresponding Darwin curves
in Figs. 1(b) and 1(c). Surprisingly, the intensity ratios of
the BPs exactly follow Eq. (1) instead of Eq. (2), though the
calculations are rigorously based on the dynamical theory
of perfect semi-infinite crystals (t = ∞). Interestingly, the
Darwin widths of the BP are always the same [0.86 and 6.1
μrad in Figs. 1(b) and 1(c), respectively], indicating that
the two curves have the same shape. Indeed, if we scale the
intensities of reflection −H by the factor |F (H)/F (−H)|2,
the two curves become identical, which means that not only
does the peak reflectivity ratio follow Eq. (1) but the intensity
ratio at each angle 	θ also follows Eq. (1). Consequently, the
integrated intensity ratio also satisfies Eq. (1).

In order to verify Eq. (1), we acquired a number of large
synthetic quartz crystals (220 × 80 × 40 mm3) from Tokyo
Denpa Co., Ltd [20], from which a series of quartz (1̄21̄1̄)
wafers (≈4 mm thick) were cut and carefully lapped, etched,
and polished. Afterwards, synchrotron white-beam x-ray to-
pography characterization was performed on these wafers. It
was found that most of the wafers are nearly perfect with no
dislocations or other crystalline defects, as shown in Fig. 2(a).
Such perfect wafers were used in the following experiments,
which ensures that x-ray diffraction from these wafers is
purely dynamical diffraction without kinematical diffraction
contributions.

The 2̄42̄2̄/24̄22 BP of the wafers was first studied by
the double-crystal diffraction method with an asymmetric Si
(333) crystal as the beam conditioner [Fig. 2(b)]. The x-ray
beam was always set at E = 8.05 keV [except Fig. 2(a)] by
the upstream Si (111) double-crystal monochromator (DCM).
The Bragg angle of the Si 333 reflection is 47.47 °, which is
close to the Bragg angle of 43.54 ° of quartz 2̄42̄2̄ and 24̄22
reflections. The asymmetric angle of the Si (333) crystal is
ϕ = 45.47◦ such that the incidence angle is 2 ° and the vertical
beam expansion factor is the asymmetric factor |b| = 28.6.
Afterwards, the x-ray footprint on the quartz crystal is lim-
ited to 15 × 15 mm2. The unique advantage of double-crystal
diffraction is that when the two reflections have similar Bragg
angles the two diffraction bands in the DuMond diagram
[inset of Fig. 2(b)] are nearly parallel to each other. Rocking
the quartz sample is then equivalent to scanning the diffraction
band of quartz across the Si band along the horizontal direc-
tion (θ ), and obviously the scanning is nearly identical for any
wavelength (λ) around the Bragg conditions. Consequently,
the convolution of the two crystals is almost independent of
the divergence and spectrum of the incident beam. Hence,
the rocking curve (RC) measured is nearly independent of the
incidence conditions, and is thus very accurate.

The dotted lines in Figs. 2(c) and 2(d) are the measured
double-crystal RCs of 2̄42̄2̄ and 24̄22, respectively. Under
stable experimental conditions, the measurements were re-
peated many times with different quartz samples. For the
same reflection, all the RCs have the same shape with the
peak intensity variation less than 3%. The fact that the 2̄42̄2̄
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FIG. 2. (a) White-beam reflection topograph of one of the quartz (1̄21̄1̄) wafers. The diffraction vector of this reflection is H = 21̄1̄0
at energy E = 10.3 keV. (b) Schematic of double-crystal diffraction. (c) Measured and simulated RCs of 2̄42̄2̄ symmetric reflection. The
calculated peak reflectivity is normalized to unity. (d) Measured and simulated RCs of symmetric 24̄22 reflection. The measured FWHMs in
(c) and (d) are 7.86 and 7.95 μrad, while the calculated FWHM is 7.67 μrad. The units and scales of the reflectivity and intensity in (c) and
(d) are identical.

reflection is stronger than 24̄22 unambiguously reveals that
the crystals are right-handed quartz. Left-handed quartz is the
inverted structure of right-handed quartz [20], so reflection
2̄42̄2̄ should be weaker than 24̄22. This shows that anomalous
diffraction from large perfect crystals can be conveniently
used to accurately determine the handedness of chiral crystals
(or polarity of ferroic crystals) without the need to select
a wavelength close to the absorption edge due to the high
accuracy, which is an important application that can be carried
out even with laboratory x-ray sources.

The red lines in Figs. 2(c) and 2(d) are the simulated
RCs based on the dynamical theory. The divergence of the
beam incident on the Si (333) beam conditioner was set to
40 μrad for the simulation. Here the fact that the RCs are
much wider than the Darwin curves in Fig. 1(b) is due to the
convolution with the Si 333 reflection that has a wider Darwin
width and a wider bandwidth. Apparently, the measured RCs
are very close to the simulated ones. Of most importance is
that the measured peak intensity ratio is 1.65, very close to
the calculated ratio 1.58. Since the two measured curves in
Figs. 2(c) and 2(d) have the same shape, the ratio of the inte-
grated intensity is also 1.65. This verifies that the diffraction
intensities of the quartz 2̄42̄2̄/24̄22 BP agree well with Eq. (1)
under dynamical diffraction conditions. The relative deviation
of the measured ratio from Eq. (1) is less than 5% [while it

deviates from the prediction of 1.28 from Eq. (2) by 31%].
The high accuracy of the experiments is also indicated by
the excellent agreement between the measured and calculated
RC widths. In particular, the almost identical widths of the
two measured RCs indicate that the crystalline qualities of
the two opposite surfaces of the (1̄21̄1̄) wafers are the same,
i.e., the intensity difference is indeed caused by the anomalous
scattering instead of surface imperfections or defects (if any).
Note that when the crystal is defective the defects or sur-
face imperfections can remarkably change the rocking curves,
which will make the measurements completely unreliable.

Next, we removed the Si (333) beam conditioner and per-
formed the simple single-axis diffraction, as schematically
shown in Fig. 3(a). The blue and red solid lines in Fig. 3(b)
are the measured RCs of 2̄42̄2̄ and 24̄22, respectively, and the
dashed lines are the corresponding dynamical-theory simula-
tions that include convolution with the DCM. The single-axis
diffraction process has lower accuracy and the rocking curve
strongly depends on the incident beam conditions (e.g., the
incidence divergence, spectrum, etc.). Compared to Figs. 2(c)
and 2(d), therefore, here the measured full widths at half maxi-
mum (FWHMs) are much wider, 134 μrad, for both measured
RCs. The deviation between the measurements and simula-
tions is noticeable, as shown particularly by the elevated tails.
However, the shapes of the two measured curves are the same,
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FIG. 3. (a) Schematic of single-axis diffraction. (b) Measured
(solid line) and simulated (dashed line) RCs of symmetric reflections
2̄42̄2̄ (blue) and 24̄22 (red) by the single-axis diffraction setup in (a).
(c) The corresponding RCs of symmetric 1̄21̄1̄/12̄11 reflections.

indicating that the deviation is purely caused by the incident
beam conditions or beamline instruments, not by crystalline
imperfections (if any) of the quartz samples. The measured
intensity ratio of the two RCs is 1.70, while the ratio between
the two theoretical RCs is still 1.58. The relative difference
between the two ratios is 7.6%, which is still close enough
to indicate that the single-axis diffraction intensity ratio also
agrees with Eq. (1) instead of Eq. (2) because the deviation
from the latter is 35%. Therefore, Figs. 3(b), 2(c), and 2(d)
show that, although the conditions of the incident beam and
the instruments can remarkably change the RCs, the intensity
ratio remains the same as predicted by Eq. (1), indicating that
this is the intrinsic property of the BP.

The solid lines in Fig. 3(c) are the RCs of the base re-
flections 1̄21̄1̄/12̄11 of the (1̄21̄1̄) wafers measured with the
setup in Fig. 3(a), and the dashed lines are the simulations.
Here the Bragg angle θB of quartz is smaller but closer to
the Bragg angle (14.22 °) of the DCM. Thus, the RC widths
(≈45 μrad) are smaller than those in Fig. 3(b). Although in
Fig. 3(c) the tails of the measured Bragg peaks are again
much higher than the simulations, the two curves still have
the same shape, indicating that the tails are again caused by
the beamline instruments. Equation (1) and Fig. 1(c) have
predicted that the 1̄21̄1̄ reflection from the front surface of
the (1̄21̄1̄) wafer is weaker than the reflection 12̄11 from the

back surface, which is opposite to the situation of the above
second-order reflection pair 2̄42̄2̄/24̄22. Figure 3(c) correctly
reveals this inequality, where the measured intensity ratio of
the 1̄21̄1̄/12̄11 pair is 0.81, very close to the theoretical value
of 0.83 predicted by Eq. (1).

Therefore, Figs. 1–3 clearly demonstrate that the
dynamical-diffraction intensity ratio between a BP is always
governed by Eq. (1) under different diffraction conditions.
The underlying mechanism can be understood from the fol-
lowing plane-wave dynamical theory.

In Fig. 1(a), the incident wave vector K0 is in
the xz plane. Near the Bragg condition of reflec-
tion H, the incident plane wave activates two wave
fields in the crystal, D(1,2)

0 exp[−i(K0 − Kδ1,2ẑ) · r] +
D(1,2)

H exp[−i(K0 + H − Kδ1,2ẑ) · r], where K = 2π/λ.
Define a parameter representing the deviation of the incidence
angle ω and the wavelength λ from the Bragg conditions:

η = 1

C�[F (H)F (−H)|b|]1/2

{
λ

d

[
sin (ω + ϕ) − λ

2d

]

−�F(0)(1 + |b|)
2

}
, (3)

where |b| = sin(θB + ϕ)/sin(θB − ϕ) is the asymmetric fac-
tor, d is the lattice spacing, C is the polarization factor [equal
to 1 and cos(2θB) for σ and π polarization, respectively],
and � = reλ

2/(πV) (re is the classical electron radius and
V is the unit-cell volume). Compared with the conventional
definition of η [15,17], here Eq. (3) has the advantages that
it is a two-dimensional function of both ω and λ and is valid
even when θB → 90◦ [22]. Then one can derive

δ1,2 = C�[F (H)F (−H)]1/2

2 sin (θB − ϕ)|b|1/2 [η ± (η2 − 1)
1/2

]

+ �F (0)

2 sin(θB − ϕ)
, (4)

where the imaginary parts of δ1 and δ2 always have opposite
signs. The ratios of the internal wave amplitudes are

r1,2 = D(1,2)
H /D(1,2)

0 = �1,2(η)

|b|1/2

[
F (H)

F (−H)

]1/2

, (5)

where

�1,2(η) = −[η ± (η2 − 1)
1/2

]. (6)

Here we first let + and − of the ± signs in Eqs. (4)–(6)
correspond to wave field 1 and 2, respectively. However, if
Im(δ1) < 0, we swap the indices of the two wave fields to
ensure Im(δ1) > 0 and Im(δ2) < 0. For a semi-infinite crystal
(t → ∞), only wave field 1 exists, and the Bragg reflectivity
is

R∞(H, ω, λ) = |b||r1|2 = |�1|2
∣∣∣∣ F (H)

F (−H)

∣∣∣∣. (7)

Note that Eqs. (4) and (6) are symmetric about H and −H. Un-
der identical geometry, therefore, the reflectivity of the oppo-
site reflection −H is R∞(−H, ω, λ) = |�1|2|F (−H)/F (H)|.
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Consequently, it is rigorous that

R∞(H, ω, λ)

R∞(−H, ω, λ)
= |F (H)|2

|F (−H)|2 . (8)

This is the elementary diffraction function showing that the
reflectivity ratio of a BP is strictly equal to the ratio of
the squared moduli of the two structure factors for a plane
wave with any incidence direction ω and any wavelength
λ near the Bragg conditions. In experiments, the measured
intensities are usually integrated or convoluted intensities.
However, if the integration or convolution conditions of H
and −H are the same, such intensities still strictly preserve
the ratio |F (H)|2/|F (−H)|2 because they are simply integra-
tions of the elementary functions. Therefore, for comparing
diffraction of BPs, there is no need to distinguish between
plane-wave, integrated, or convoluted intensity ratios since
they have the same value. Thus, Eq. (8) proves Eq. (1) for
pure dynamical diffraction of BPs from thick crystals. The
elementary function Eq. (8) also explains why each RC pair
in Figs. 1–3 has the same intensity ratio |F (H)|2/|F (−H)|2 at
any angle 	θ such that each RC pair has the same shape and
FWHM. This is a unique property of BPs, which is different
from the general diffraction principles for comparing different
reflections other than BPs, where only the integrated intensity
is proportional to |F (H)|2 (kinematical diffraction) or |F (H)|
(dynamical diffraction) while the elementary function does
not necessarily have this proportionality.

For example, in the dynamical theory of nonabsorp-
tion crystals, the Darwin curve is a universal flat-plateau
curve in terms of the normalized parameter η: R∞ =
1 for |η| � 1 and R∞ = [|η| − (η2 − 1)1/2]2 for |η| > 1
[15,17]. Then the integrated intensity is I (H) = ∫ R∞dω =√|b||C|�|F (H)|/(3 sin 2θB). This is the origin of I (H ) ∝
|F (H)| in the dynamical theory, where the integrated intensity
is, in fact, proportional to the width of the Darwin curve
in terms of ω while the Darwin curve width is proportional
to |F (H)|. Note that when the zero-absorption condition is
satisfied the proportionality I (H ) ∝ |F (H)| does not violate
Eq. (1) because here both Eqs. (1) and (2) give the unity
ratio [i.e., I (H) = I (−H) ]. For absorbing crystals, the pro-
portionality I (H ) ∝ |F (H)|, in fact, is no longer valid. Since
anomalous diffraction always involves significant x-ray ab-
sorption, the intensity ratios of BPs always follow Eq. (1)
instead of Eq. (2).

For a parallel-sided crystal plate with a finite thickness t ,
both wave fields exist in the crystal. Then the Bragg reflectiv-
ity is

R(H, ω, λ, t ) = |b|
∣∣∣∣ r1 + r2ϒ

1 + ϒ

∣∣∣∣
2

=
∣∣∣∣�1 + �2ϒ

1 + ϒ

∣∣∣∣
2∣∣∣∣ F (H)

F (−H)

∣∣∣∣,
(9)

where ϒ = −(�1/�2)exp[iK (δ1 − δ2)t] is the thickness
function. Here, since the factor |(�1 + �2ϒ )/(1 + ϒ )|2 is
also symmetric about H and −H, Eq. (9) again gives
R(H, ω, λ, t )/R(−H, ω, λ, t ) ≡ |F (H)|2/|F (−H)|2, which is
equivalent to Eq. (8) for finite-thickness crystals.

Figure 4 shows the theoretical Darwin curves of the
2̄42̄2̄/24̄22 and 1̄21̄1̄/12̄11 pairs for a thin quartz (1̄21̄1̄)
wafer with t = 5 μm. Compared with Figs. 1(b) and 1(c),

FIG. 4. Theoretical Darwin curves of a (1̄21̄1̄) quartz plate with
thickness t = 5 μm. The diffraction conditions are the same as
Figs. 1(b) and 1(c). (a) 2̄42̄2̄/24̄22 reflections. The inset shows the
intensities on the logarithmic scale. (b) 1̄21̄1̄/12̄11 reflections.

here the Darwin curves are quite different, but the intensity
ratios remain the same. In particular, the inset of Fig. 4(a)
shows the interference fringes of the BP indeed have the same
shape, as indicated by the exact coincidence of the positions
of the intensity minima. Note that for the thickness of 5 μm
the diffraction process approaches the kinematical diffrac-
tion mechanisms. In fact, we have also used the kinematical
diffraction mechanisms to simulate the Darwin curves for
t = 5 μm, and the simulations are indeed close to the curves
in Fig. 4. This proves that Eq. (1) is also valid for kinematical
diffraction.

FIG. 5. (a) Schematic of Laue transmission diffraction. ϕ′ is
the asymmetric angle. (b) Theoretical diffraction curves of quartz
2̄42̄2̄/24̄22 for symmetric diffraction (ϕ′ = 0) in the thick-crystal
case (t = 500 μm, dynamical diffraction). (c) Thin-crystal case (t =
20 μm, approaching kinematic diffraction). The intensity ratio is
again 1.58 in both (b) and (c).
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For the Laue transmission diffraction geometry in Fig. 5(a),
the normalized parameter is

η = 1

C�[F (H)F (−H)b]1/2

{
−λ

d

[
cos (ω − ϕ′) − λ

2d

]

−�F(0)(b − 1)

2

}
, (10)

where b = cos(θB + ϕ′)/cos(θB − ϕ′). Then the corrections to
the two internal vertical wave vectors are

δ1,2 = C�[F (H)F (−H)]1/2

2 cos (θB − ϕ′)b1/2
[η ± (η2 + 1)

1/2
]

+ �F (0)

2 cos (θB − ϕ′)
. (11)

The reflectivity of reflection H is

RLaue(H, t,	ω) =
∣∣∣∣ F (H)

F (−H)

∣∣∣∣ |exp (iKδ1t ) − exp (iKδ2t )|2
4|η2 + 1| ,

(12)

from which we again derive the same BP intensity ratio:

RLaue(H, t, 	ω)

RLaue(−H, t,	ω)
= |F (H)|2

|F (−H)|2 . (13)

Figures 5(b) and 5(c) show the calculated plane-wave
Laue transmission diffraction rocking curves of the quartz
2̄42̄2̄/24̄22 BP. As expected, such diffraction curves have
(angular) Pendellösung fringes besides the main peaks [17].
For both the thick-crystal case (dynamical diffraction) and
the thin-crystal case (kinematic diffraction), the intensity
ratio is again consistent with Eq. (1). In our paper, we
have also used the Fourier coupled-wave diffraction theory
(a more rigorous theory valid for any diffraction geometry,

particularly grazing geometry) [23] to successfully verify
Eq. (1) in various grazing-incidence diffraction configurations
where the above formulas may fail.

In summary, we have demonstrated that the BP intensity
ratios of noncentrosymmetric crystals are always equal to the
squared modulus ratio of the two structure factors instead
of their modulus ratio. In particular, the repeatable high-
resolution diffraction experiments of quartz crystals precisely
proved the consistence between the theoretical and measured
ratios. The dynamical theory reveals the underlying mecha-
nism, in which the elementary diffraction function of the BP
always obeys the |F (H)|2/|F (−H)|2 ratio rule. This is intrin-
sically valid for kinematical, dynamical, or mixed diffraction
processes. Therefore, the BP intensity ratio is preserved for
any practical convoluted or integrated intensities and for any
diffraction geometry and incident beam conditions (even un-
favorable). This indicates that under the same diffraction
conditions the shapes of the two rocking curves of a BP must
be identical, which is the most important criterion to ensure
the reliability of the measurements (i.e., the rocking curves
have not been affected by crystal defects or imperfections).
The universal validity of Eq. (1) verified thus paves the way
for various applications of x-ray diffraction of BPs.
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