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Abstract
Resonances in optical cavities are used to manipulate light propagation, enhance light–matter
interaction, modulate quantum states, and so on. However, the index contrast between the
traditional cavities and the host is generally not high, which to some extent limited their
performances. By putting dielectric cavities into a host of zero-index materials, index contrast in
principle can approach infinity. Here, we analytically deduced Mie resonance conditions at this
extreme circumstance. Interestingly, we discovered a so-called resonance nesting effect, in
which a set of cavities with different radii can possess the same type of resonance at the same
wavelength. We also revealed previously unknown degeneracy between the 2l-TM (2l-TE) and
2l+1-TE (2l+1-TM) modes for ε≈ 0 (µ≈ 0) material, and the 2l-TM and 2l-TE for both ε≈ 0
and µ≈ 0. Such extraordinary resonance nesting and degeneracy provide additional principles
to manipulate cavity behaviors.

Supplementary material for this article is available online

Keywords: Mie resonances, zero-index media, purcell effect

(Some figures may appear in colour only in the online journal)

1. Introduction

Zero-index materials (ZIMs) [1, 2], including ε-near-zero
(ENZ), µ-near-zero (MNZ), and both ε and µ-near-zero
(EMNZ) materials, where ε and µ denote permittivity and

6 These authors contributed equally to this work.
∗

Author to whom any correspondence should be addressed.

permeability, respectively, have attracted great interest. They
have been experimentally realized in natural materials [3, 4],
engineered dispersionwaveguides [5–7], photonic crystals [8],
and metamaterials [9–12]. Owing to near-zero ε or µ [1, 2], the
electric field will decouple with the magnetic field in ZIMs
accompanied by constant phase distribution. These specific
materials have many attractive properties, like supercoupling
[7, 13–15], directional radiation phase pattern [16], large
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optical nonlinearity [17, 18], random control of reflection and
refraction [19–22], and resonance ‘pinning’ effect [3, 23], etc.
They have also been used in coherent perfect absorption [24],
cloaking [25], waveguide connection [13, 14], optical anten-
nas [3, 23], and so on. However, although some studies have
investigated the properties of defects in ZIM, they focus more
on the transmission and scattering properties rather than the
influence on the cavity modes due to the huge index contrast.

Optical cavities are ubiquitous, whose resonances can be
used to manipulate light propagation, enhance light–matter
interaction, modulate quantum states, and generate quantum
sources, and so on. Owing to the existence of the index (ε,µ)
contrast between the cavities and the host, optical responses
such as surface plasmon resonance [26–28] and dielectric
resonance [29–33] occur, characterized as strong local field
enhancement. For example, series of resonances of spher-
ical cavities in non-zero dielectric environment are perfectly
figured out by the Mie theory [34–36]. However, traditionally
the index contrast is generally not so high, which, to some
extent, limits the cavity performances. The ZIMs bestow an
opportunity to increase the contrast ratio amazingly towards
the infinity. Despite this dramatic change of contrast ratio,
only the electric dipole resonance of dielectric cavity has
been demonstrated to modify the photon-emitter interaction
[37–41]. The behaviors of higher order resonances of dielec-
tric cavities embedded in the ZIMs remain unknown.

Here, we analytically deduce Mie resonance conditions of
all orders for dielectric spherical cavities embedded in ENZ,
MNZ, and EMNZbackground, respectively (figure 1). Unusu-
ally, for the same angular mode number l, a series of Mie
resonances with different radii can be achieved at a fixed
wavelength, so-called the resonance nesting effect.More inter-
estingly, the 2l-TM (TE) mode of the dielectric cavity has the
same resonant frequency as that of its 2l+1-TE (TM) mode for
the ENZ (MNZ) material; while for EMNZ material, the res-
onance degeneracy occurs to be the same for its 2l-TM and 2l-
TE modes. We also find that the degenerate resonances own
different linewidths, in other words, as the order l becomes
higher, the linewidth becomes narrower. All the above ana-
lytical results are confirmed by the numerical finite element
method. The nesting and degeneracy of optical modes origin-
ate from the ultrahigh contrast ratio of ε orµ between the cavit-
ies and the host. Therefore, these phenomena also exist in non-
spherical dielectric cavities surrounded by ZIMs. Owing to the
resonance degeneracy of optical modes enabled by ZIMs, the
interference or superposition between the modes is expected.
The resonance degeneracy and nesting enabled by ZIMs could
have potential applications in light manipulation, light–matter
interaction, and photonic devices.

2. Mie resonance conditions for all orders

We employ Mie theory [34, 35] to solve the conditions that
Mie resonances occur in ZIMs. As shown in figure 1, the
dielectric spherical cavity (the white part) with the radius of
R and dielectric constant ε1 and magnetic permeability µ1

is embedded in the infinite ZIM (the blue part) with ε2 and

Figure 1. The spherical cavity with zero-index background. The
dielectric sphere (the white part) with radius of R embedded in the
infinite ZIM (the blue part).

µ2. Optical modes in the spherical coordinate system are usu-
ally labeled as TMlm/TElm modes [29, 30, 34–36], where TM
means transverse magnetic mode and TE transverse electric
mode, l the angular mode number, and m the azimuthal mode
number satisfyingm⩽ l.m has no effect on the resonance con-
ditions, so let m= 0. In the following, for simplicity, Mie res-
onances of the spherical cavity are categorized as 2l-TM and
2l-TE Mie resonances, where l= 1 denotes the dipole mode
and l= 2 the quadrupole mode, and so on.

Let us first consider 2l-TM modes. Because their mag-
netic field has no radial component, the electromagnetic
fields inside and outside the spherical cavity can be writ-
ten as (see supplementary material available online at
stacks.iop.org/JOPT/24/025401/mmedia):

Hl
TM =

{
M(2)

l + aM(1)
l , r< R,

cM(3)
l , r⩾ R,

El
TM =


− k1
iε1ε0ω

(
N(2)
l + aN(1)

l

)
, r< R,

− k2
iε2ε0ω

(
cN(3)

l

)
, r⩾ R,

(1)

where a and c are coefficients to be determined, M and N
are two sets of Mie bases [34–36] on which the electromag-
netic field can be expanded. M( j=1,2,3)

l =−∂Pl
∂θ z

( j)
l (x)êϕ, and

N( j=1,2,3)
l =

z( j)l (x)
x l(l+ 1)Plêr+ 1

x

∂
[
xz( j)l (x)

]
∂x

∂Pl
∂θ êθ, in which

x= kr and k is the wavenumber, labeled as k1 in the sphere
and k2 out the sphere; z( j)l mean different kinds of spher-
ical harmonic functions respectively: spherical Bessel func-
tion jl, spherical Neumann function nl, and spherical Hankel
function of the first kind h(1)l which is a linear combina-

tion of jl and nl, i.e. h
(1)
l = jl+ inl. For simplicity, we make
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ηl(x)≡ xjl(x), ζl(x)≡ xnl(x), ξl(x)≡ xh(1)l (x). Pl is the asso-
ciated Legendre function.

According to the continuity of tangential electric field and
magnetic field on the boundary (r=R), two linear equations
with two coefficients a and c are obtained (see supplementary
material): {

ε̃(ζ ′
l (ρ)+ aη ′

l (ρ)) = cξ ′
l (sρ),

ζl(ρ)+ aηl(ρ) = c
ξl(sρ)
s

,
(2)

in which ρ= k1R, ε̃= ε2/ε1, µ̃= µ2/µ1,s= k2/k1 =
√
ε̃µ̃.

When the spherical cavity is resonant, a and c would go to
extrema, that is, the denominators of a and c should be zero,
which satisfies that:

ε̃η ′
l (ρ)ξl(sρ) = sηl(ρ)ξ

′
l (sρ). (3)

This is a universal condition that all order TMMie resonances
occur in the spherical cavity embedded in arbitrary medium
[36]. When s≈ 0, equation (3) turns into the resonance con-
dition of the spherical cavity in ZIMs. And if s≈ 0, ξl(sρ)≈
al(sρ)−l and ξ ′

l (sρ)≈ (−l)al(sρ)−(l+1) (see supplementary
material), substituting them into equation (3), we obtain:

ε̃ρη ′
l (ρ)+ lηl(ρ) = 0, (4)

which is the ideal Mie resonance condition for the 2l-TM
modes of spherical cavity embedded in ZIMs. Furthermore,
for the ENZ and EMNZ media, ε̃≈ 0, so equation (4) can be
simplified to ηl(ρ) = 0. Ideal resonance conditions can only
be achieved when s= 0 or s is very near zero, but in fact, the
small imaginary part of ε2 or µ2 will make a little influence on
the 2l-TM Mie resonances (see supplementary material).

It is worth mentioning that in addition to ZIMs, s≈ 0 can
also be satisfied by the situation that ε1 ≫ ε2, i.e. the high
index cavity embedded in low index material (like air). How-
ever, as discussed in supplementary material, the same reson-
ant conditions as above can be achieved only when ε1 is very
high (more than 900).

Then, with the same procedure, the resonance conditions
for 2l-TE modes in the spherical cavity are derived from
the continuity of the electromagnetic fields on the boundary
(r=R). Their electromagnetic fields inside and outside the
sphere are written as (see supplementary material):

El
TE =

{
M(2)

l + bM(1)
l , r< R,

dM(3)
l , r⩾ R,

Hl
TE =


k1

iµ1µ0ω

(
N(2)
l + bN(1)

l

)
, r< R,

k2
iµ2µ0ω

(
dN(3)

l

)
, r⩾ R,

(5)

where b and d are coefficients to be determined. According to
the continuity of tangential electric field and magnetic field on
the boundary (r=R), for the 2l-TE modes we can get a set of
linear equations with two unknown coefficients b and d (see
supplementary material):

{
µ̃(ζ ′

l (ρ)+ bη ′
l (ρ)) = dξ ′

l (sρ),

ζl(ρ)+ bηl(ρ) =
1
s
dξl(sρ).

(6)

When in resonant, the denominators of the coefficients of b
and d should be zero, i.e.

µ̃η ′
l (ρ)ξl(sρ) = sηl(ρ)ξ

′
l (sρ). (7)

Which is a universal condition of all order TE Mie resonances
in the spherical cavity embedded in arbitrary medium [36].
While for ZIM medium, s≈ 0. In this case, take further sim-
plification of ξl(sρ), and we can get:

µ̃ρη ′
l (ρ)+ lηl(ρ) = 0, (8)

which is the idealMie resonance condition for the 2l-TEmodes
of spherical cavity embedded in ZIMs. Specially, for MNZ
and EMNZ media, µ̃≈ 0, so equation (8) can be simplified
to ηl(ρ) = 0. Similarly, the small imaginary part of ε2 or µ2

will have effect on the 2l-TEMie resonances but different with
that on the 2l-TM Mie resonances (see supplementary mater-
ial). One can see more details of Mie theory in supplementary
material.

The universality of Mie resonance conditions (equation (4)
for TM modes and equation (8) for TE modes) is worth to be
emphasized. First, these formulas can be applied to all elec-
tromagnetic wavelengths like the visible, near-infrared band,
microwave, and terahertz though in the following only the
examples of visible are illustrated. Second, the spherical cavity
inside ZIMs can be any no-zero indexmaterials, rather than the
air cavity studied here. Through some appropriate correction,
equations (4) and (8) may be applied to some other cavities
with spherical symmetry in ZIMs. And it is worth connecting
these TE/TMmodes with effective index neff [42], as it will be
more intuitive in physics. In the concept of effective index neff ,
λ= 2πRneff. While in our formulas, ρ= 2πRn/λ where n is
the refractive index of the cavity. Through the transformation,
it is found that neff = n/ρ, where ρ is the analytical solutions of
equations (4) and (8). So effective index neff can be solved with
those resonance conditions. Now for the dielectric cavities in
zero index materials, there are several series of solutions for
equations (4) and (8), so we can obtain different values of neff ,
which corresponds to the resonance nesting and degeneracy.

3. Nesting and degeneracy of Mie resonances

The Mie resonance conditions for 2l-TM and 2l-TE modes of
dielectric spherical cavity placed in ENZ, MNZ, or EMNZ
media are summarized in table 1. When the background varies
from ENZ to EMNZ, the resonance conditions of the 2l-TM
modes have no change, but that of the 2l-TE modes are mod-
ulated and become the same as the 2l-TM modes when µ2 is
also near zero. For the MNZ background, vice versa (see sup-
plementary material). It can be seen that these resonance con-
ditions are related to ηl(ρ) and its derivative η ′

l (ρ). Give the
expression of ηl(ρ) with l= 1,2,3:

3



J. Opt. 24 (2022) 025401 X Duan et al

Table 1. The Mie resonance conditions for 2l-TM and 2l-TE modes
of dielectric spherical cavity embedded in ZIMs. Here
ρ= k1R= 2πnR/λ with the refractive index n=

√
ε1 µ1 of

dielectric spherical cavity.

ENZ MNZ EMNZ

2l-TM mode ηl(ρ) = 0 ε̃ρη ′
l (ρ)+

lηl(ρ) = 0
ηl(ρ) = 0

2l-TE mode µ̃ρη ′
l (ρ)+

lηl(ρ) = 0
ηl(ρ) = 0 ηl(ρ) = 0

Table 2. The Mie resonance conditions for 2-, 4- and 8-TM/TE
modes of dielectric spherical cavity embedded in ZIM.

2-TM 2-TE 4-TM 4-TE 8-TM 8-TE …

ENZ (µ2 = µ1) A B C A D C …
MNZ (ε2 = ε1) B A A C C D …
EMNZ A A C C D D …

A: sinρ− ρcosρ= 0;
B: sinρ= 0;
C: (3− ρ2) sinρ− 3ρcosρ= 0;
D: (15− 6ρ2) sinρ− (15ρ− ρ3)cosρ= 0.

η1(ρ) = ρ−1(sinρ− ρcosρ),

η2(ρ) = ρ−2
[(
3− ρ2

)
sinρ− 3 ρcosρ

]
,

η3(ρ) = ρ−3
[(
15− 6ρ2

)
sinρ−

(
15 ρ− ρ3

)
cosρ

]
. (9)

Using equation (9) and table 1, the specific resonance con-
ditions for 2-, 4-, and 8-TE/TM modes are listed in table 2.
For conciseness, we use A to indicate sinρ− ρcosρ= 0, B
to sinρ= 0, C to (3− ρ2)sinρ− 3ρcosρ= 0 and D to (15−
6ρ2)sinρ− (15ρ− ρ3)cosρ= 0. For a specific ρ (here ρ=
k1R= 2πnR/λwith the refractive index n=

√
ε1 µ1 inside the

spherical cavity), there is generally a set of solutions from the
calculations of A, B, C or D. Namely, if the optical wavelength
is fixed, the same Mie resonance can be achieved in spherical
cavities with different radii R, which is called as ‘resonance
nesting’. More specially, if the refractive index n=

√
ε1 µ1 of

the sphere is 1, the resonant condition A can be replaced by
R/λ= 0.7151,1.2295. . ., B by R/λ= 0.5,1.0. . ., C by R/λ=
0.9173,1.4475. . ., and D by R/λ= 1.1122,1.6579. . ., where
λ is the wavelength in the vacuum. All the above results are
confirmed by the numerical finite element method (see sup-
plementary material). While when the refractive index n is not
1, the nR/λ will be the above values when resonant.

Different to plasmonic particles embedded in non-zero
index media that usually have only one resonant R/λ value
for one mode [26–28, 43], in the spherical cavity with ZIM
background, there are series of R/λ values for each 2l-TM/TE
Mie resonance. As shown in figure 2, when the resonant
wavelength is fixed at 630 nm (take an example, also can be at
other wavelengths (see supplementary material)), the radiation
power (P=

‚
1
2Re(E

∗ ×H) · d⃗S ) spectra of 2-TM reson-
ance for ENZ case are analytically obtained at R= 451.1 nm,
776.5 nm, 1096.7 nm…, and the spectra of 2-TE resonance at
R= 315.5 nm, 631.2 nm, 947.0 nm.... It can be seen from the
insets of figure 2(a) (or (b)) that the electric field distributions
of the three cavities are consistent in form, which just implies

Figure 2. Resonance nesting of (a) 2-TM and (b) 2-TE modes for
the air sphere embedded in the ENZ medium when the resonant
wavelength is fixed at 630 nm. The insets are corresponding electric
field distributions with different R (boundaries are shown as grey
circles). Here, ε2 is set as 0.01 i, µ2 = 1.

these cavities support the same kind of resonance. While the
values of cavity loss κ are different, and the larger the cavity,
the smaller the loss, because of the increase of lossless energy
storage space. It is noted that the resonant R/λ values are a
little bigger than ideal values due to the imaginary part of ε2,
and approach ideal values with decreasing the imaginary part
(see supplementary material). Besides, the resonance nesting
of 2-/4-modes for different ZIMs background is shown in sup-
plementary material.

In addition to the nesting of the same polar mode, there
is also the degeneracy between different polar modes. From
table 2, it can be seen that for the ENZ case when µ1 = µ2, the
2l-TM and 2l+1-TE Mie resonances have the same resonance
condition, i.e. the same cavity can support both 2l-TM and
2l+1-TE modes with the same wavelength. Figure 3(a) gives
the normalized radiation power spectra of degenerate 2-TM
and 4-TE modes in the air cavity with R= 450.5 nm embed-
ded in ENZ background with ε2 = 0.01i and µ2 = 1. The little
resonance shifts of the two modes originate from the effect of
the imaginary part of ε2 (see supplementarymaterial). Further-
more, the values of κ of the two degenerate modes are differ-
ent, i.e. κ= 12 nm for the 2-TM mode but κ= 4 nm for the 4-
TE mode. In a word, the same cavity supports two modes with
different loss: the higher the l, the smaller the loss, due to less
radiation. The electric field distribution, for 2-TMmode, is dis-
continuous on the boundary due to the existence of radial com-
ponent of E which suddenly changes with the high contrast
ratio of ε2 and ε1; but for 4-TE mode, the opposite is true (see
supplementary material).

4



J. Opt. 24 (2022) 025401 X Duan et al

Figure 3. The normalized radiation power spectra of degenerate
modes of air spherical cavity with R= 450.5 nm in different ZIM:
(a) 2-TM and 4-TE modes in ENZ, (b) 2-TE and 4-TM modes in
MNZ, and (c) 2-TM and 2-TE modes in EMNZ material. The insets
are their electric field distributions.

The resonance degeneracy also happens between the 2l-TE
and 2l+1-TM Mie resonances for the MNZ case when ε1 = ε2
(table 2). As shown in figure 3(b), the normalized radiation
power spectra of the 2l-TE (TM) mode for the MNZ case
are the same with that of the 2l-TM (TE) mode for the ENZ
case, because of the symmetry of electromagnetic field expres-
sions. In the same way, the little difference between the res-
onant wavelength of the 2-TE and 4-TM modes is caused by
the influence of the imaginary part of µ2 (here µ2 = 0.01i and
ε2 = 1). The electric field distribution, no matter for 2-TE or
4-TM mode, is continuous on the boundary because ε2 = ε1;
and specially for the 2-TE mode, the electric field is almost
zero out the sphere. The magnetic field distribution of the 2l-
TM mode of the ENZ case is same as the electric distribution
of the 2l-TE mode of the MNZ case, and vice versa.

While for the EMNZ case, Mie resonance degeneracy
occurs between the 2l-TM and 2l-TE modes. It can be seen
from figure 3(c) that the normalized radiation power spectra
for 2-TM and 2-TEmodes overlap together with the same cav-
ity loss κ= 12.6 nm. The electric field distribution of the 2-TM
mode has the same form as that in the ENZ case and the 2-TE
mode is similar to that in the MNZ case. Although resonance

conditions of 2l-TMmode for ENZ case, 2l-TEmode forMNZ
case and 2l-TM mode for EMNZ case have the same form,
they can not be regarded as degenerate because of the differ-
ent electromagnetic backgrounds, i.e. different ε2 and µ2 in the
ZIMs.

4. Discussion

In a cavity made of hyperbolic materials, the electromagnetic
field is confined to a small space, where at the same reson-
ant frequency, the same mode can be obtained by hyperbolic
metacavities with different sizes due to the anomalous scaling
laws [44–46]. But in our study, size-independent has a differ-
ent meaning. We studied the dielectric sphere cavities embed-
ded in ZIMs. The mode in the dielectric cavity is only related
to the radius of the dielectric cavity, no matter how the external
boundary of ZIMs changes or the size of ZIMs changes [37],
which can be used to manufacture deformable devices.

Since the theory presented here is universal, it can be
applied to all the frequency regimes of electromagentic waves,
including microwaves, THz and optical frequencies. It is con-
venient to construct the ZIMs by using the metamaterials or
photonic crystals. For instance, the arrays of metallic wires
[47] or split rings [48] can tune the effective permittivity or
permeability to zero at a certain frequency, respectively. While
a dielectric photonic crystal [8] with Dirac-like cones can
approximate EMNZ materials. Some semi-conductor mater-
ials inherently exhibit near-zero permittivity near their elec-
tronic plasma frequency [49].

Now, we discuss the influence of changing the imagin-
ary part Im(ε2) or Im(µ2), i.e. the loss term, on Mie reson-
ances. The ideal resonance conditions listed in table 1 in the
main text can be achieved only when ε2 = 0 or µ2 = 0. But
it is almost impossible to realize the real part and imagin-
ary part both zero. We have the setting that: for ENZ back-
ground, µ2 is 1, the real part of the ε2 is zero, but the imagin-
ary part has a small value, i.e. µ2 = 1, ε2 = 0+ Im(ε2)i; for
MNZ background, ε2 = 1,µ2 = 0+ Im(µ2)i; while for EMNZ
background, ε2 = 0+ Im(ε2)i, and µ2 = 0+ Im(µ2)i. From
the discussion above, we can see that the small imaginary part
would make resonant R/λ have a little deviation from the ideal
values.

For the ENZ case, the Im(ε2) affects the resonance
wavelengths of both the 2-TMmode and the 4-TEmode. From
figures 4(a) and (b), the resonant R/λ values are both coincid-
ent with the ideal value R/λ= 0.7151 for the 2-TM and 4-
TE modes only when Im(ε2) is very small. With ε2 changing
from 0.001i to 0.1i, for both 2-TM and 4-TEmodes, the reson-
ant R/λ values increase slowly. And the change of the 2-TM
mode is a little faster than that of the 4-TE mode. The cavity
loss κ also has an obvious increment but still satisfy that the κ
of the 2-TM mode is larger than that of the 4-TE mode.

For the MNZ case, changing Im(µ2) of the 2l-TE (TM)
mode has the same effect as changing Im(ε2) of the 2l-TM
(TE) mode for the ENZ case (we do not display the MNZ
case in the figure). The resonant R/λ values are both coin-
cident with the ideal value R/λ= 0.7151 for the 2-TE mode
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Figure 4. The influence of changing Im(ε2) from 0.001 to 0.1 on
the normalized radiation power spectra of Mie resonances of
(a) 2-TM mode and (b) 4-TE mode for the ENZ background with
µ2 = 1; changing Im(µ2) from 0.001 to 0.1 on the resonances of
(c) 2-TE mode and (d) 2-TM mode for the EMNZ case with
ε2 = 0.01i. The white dot lines are used to represent the resonance
wavelengths.

and 4-TMmode when Im(µ2) is very small. With µ2 changing
from 0.001i to 0.1i, for both 2-TE mode and 4-TM mode, the
resonant R/λ values increase a little. And the changes of the
2-TE mode are larger than the 4-TM mode. The cavity loss κ
also has obvious increment but still satisfies that the κ of the
2-TE mode is larger than that of the 4-TM mode.

For the EMNZ case, figures 4(c) and (d) show the influence
of changing the Im(µ2) from 0.001 to 0.1 when ε2 = 0.01i on
2-TE mode and 2-TM mode respectively. It can be seen that
when Im(µ2) is small, the resonant R/λ values are both coin-
cident with the ideal value R/λ= 0.7151 for the 2-TE mode
and 2-TMmode. As Im(µ2) gets bigger, the resonant R/λ val-
ues have a slight decrease for the 2-TE mode, but have almost
no change for 2-TM mode; the cavity loss κ becomes bigger
for 2-TE mode, and also has almost no change for the 2-TM
mode. The weak effect of Im(µ2) on the 2-TM mode comes
from the dominant role of small ε2 in the resonance of 2-TM
mode. In the same way, if changing the Im(ε2) from 0.001 to
0.1 when µ2 = 0.01i, the resonance of the 2-TE mode would
has almost no change because of the dominant role of small
µ2 in the resonance of 2-TE mode in this case.

We also discuss the situation of multilayered spherical
particles in zero index materials. Previously, multilayer spher-
ical plasmon structures were studied. When the spherical nan-
oparticle is multilayer, multiple resonances occur through the
coupling and hybridization of the electric multipolar modes
[50]. For the multilayer plasmon nanoshells, when the shell
thickness or dielectric constant is modulated, the resonance
peak and linewidth as well as their local field distribution
change correspondingly [51, 52]. In the situation that the
multilayer dielectric sphere is placed in zero index materi-
als, there will be also attractive phenomena. By designing the
thickness of the nanolayer or the dielectric constant of each
layer, there also exist the mode coupling and hybridization.
Because of resonance nesting and degeneracy existing in our
system, accidental degeneracy of optical modesmay occur and
the near-field localization can be greatly modulated, which
may lead to more enhanced the light–matter interaction at the
nanoscale.

Figure 5. Structures of the 2D cavity. The dielectric cylinder (the
yellow part) with the radius of embedded in the infinite ZIM (the
green part).

The situation of the 2D structures has also been considered.
The 2D structure can be regarded as a ZIMs-wrapped cyl-
indrical cavity, as shown in figure 5. We applied Mie theory
in the cylindrical coordinate system and obtained their reson-
ance conditions.

The electric field inside and outside the cavity can be writ-
ten as:

Ein =
∑(

−aTElmMlm+ iaTMlm Nlm
)

Hin =
k1
ωµ1

∑(
aTMlm Mlm+ iaTElmNlm

)
Eout =

∑(
−bTElmMlm+ ibTMlm Nlm

)
Hout =

k2
ωµ2

∑(
bTMlm Mlm+ ibTElmNlm

)
. (10)

Using boundary continuity conditions, and let C1 =
k1

ωµ ′
1
,

C2 =
k2

ωµ ′
2
, we can obtain the following solutions with cyl-

indrical Bessel functions:

aTMlm =
1
c1
H ′
l (k1r)Hl (k2r)− 1

c2
Hl (k1r)H ′

l (k2r)
1
c2
Jl (k1r)H ′

l (k2r)−
1
c1
J ′l (k1r)Hl (k2r)

bTMlm =
i k2
c2 k1

1
c2
Jl (k1r)H ′

l (k2r)−
1
c1
J ′l (k1r)Hl (k2r)

aTElm =
1
c1
Hl (k1r)H ′

l (k2r)− 1
c2
H ′
l (k1r)Hl (k2r)

1
c2
J ′l (k1r)Hl (k2r)− 1

c1
Jl (k1r)H ′

l (k2r)

bTElm =−
i k2
c2 k1

1
c2
J ′l (k1r)Hl (k2r)− 1

c1
Jl (k1r)H ′

l (k2r)
. (11)
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Figure 6. COMSOL simulations of 2D structures: (a) 2-TM mode in ENZ, (b) 2-TE mode in ENZ, (c) 4-TM mode in ENZ.

For TM modes, with a is the radius of the cylinder, the res-
onance condition is:

1
c2
Jl (k1a)H

′
l (k2a)−

1
c1
J ′l (k1a)Hl (k2a) = 0. (12)

When ENZ limit ε∼ 0 is applied:

Jl (k1a) = 0. (13)

For example, when l= 1, we obtain:

k1a= 3.8317,7.0156,10.1735, . . . (14)

Which means, a
λ = 0.6098,1.1166,1.6192, . . ., while λ is the

resonant wavelength. So resonance nesting happens in 2D cav-
ities. When l= 2:

a
λ
= 0.8174,1.3396,1.8493, . . . (15)

When l= 3:

a
λ
= 1.0154,1.5535,2.0714, . . . (16)

And for TM modes, the resonance condition is:

1
c2
J ′l (k1a)Hl (k2a)−

1
c1
Jl (k1a)H

′
l (k2a) = 0. (17)

When ENZ limit is applied:

J ′l (k1a)+
lJl (k1a)
k1a

= 0. (18)

For example, when l= 1, we obtain:

a
λ
= 0.3827,0.8786,1.3773, . . . (19)

When l= 2:

a
λ
= 0.6098,1.1166,1.6192, . . . (20)

When l= 3:

a
λ
= 0.8174,1.3396,1.8493, . . . (21)

From this we know that, for ENZ, 2l-TMmodes is in degen-
erate with 2l+1-TE modes. And we solved all the cases, then
obtained:

ENZ MNZ EMNZ

2l-TM modes Jl (k1a) = 0 J ′l (k1a)+
lJl (k1a)
k1a

= 0

Jl (k1a) = 0

2l-TM modes J ′l (k1a)+
lJl (k1a)
k1a

= 0

Jl (k1a) = 0 Jl (k1a) = 0

2-TM 2-TE 4-TM 4-TE

ENZ(µ1 = µ2) A B C A
MNZ(ε1 = ε2) B A A C
EMNZ A A C C

A:
a

λ
= 0.6098,1.1166,1.6192, . . .

B:
a

λ
= 0.3827,0.8786,1.3773, . . .

C:
a

λ
= 0.8174,1.3396,1.8493, . . .

And different modes of electric field were simulated using
COMSOL, as shown in figure 6:

We get resonance nesting and degeneracy results in 2D
structures similar to those in sphere cavities.

5. Conclusion

In summary, we have derived analytical expressions of all
order Mie resonances occurring for dielectric spherical cavit-
ies within the ENZ, MNZ, and EMNZ materials, respectively.
Based on these Mie resonance conditions, we have revealed
the phenomena of resonance nesting and resonance degener-
acy existing in ZIMs. The nesting and degeneracy originate
from the high contrast ratio of ε or µ in and out the cavit-
ies, thus if the cavities with large ε or µ embedded in the low
index materials, the same phenomena will occur (see supple-
mentary material). With resonance nesting, the electric field
of the same mode is distributed with different radii, so they
can be used to modulate the locality of the field. When a light
field or source of the same mode is required, the size of the
cavity can be more flexible. Superior to single modes, our
degeneracy modes possess coherent coupling of electric fields
and so they have potential application in modulating light–
matter interaction and light manipulation.In contrast to previ-
ous mode degeneracy generally occurring between+l and−l,
themode degeneracy here with different angular mode number
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l will provide an additional way to realize quantum entangle-
ment and quantum operation. Besides, the modes in the cavity
do not vary with the shape or size of the external boundary of
the ZIMs [37], so our study can also be applied to deformable
devices.
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