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metasurface research has spawned new 
types of flat optical components including 
beam deflectors,[4] high-quality-factor dif-
fractors,[5] wave plates,[6] lenses,[7,8] and 
holograms.[9,10] Compared with their bulky 
counterparts that often rely on the phase 
accumulation of light propagating through 
conventional media, metasurface-based 
components can efficiently manipulate 
light by a deep subwavelength interface, 
making them compact, easy for integra-
tion, and relatively low loss, especially 
when dielectric materials are used.[11] In 
addition, the large flexibility in metasur-
face design offers unique ability to control 
light for multipurposed tasks that are usu-
ally inaccessible based on natural mate-
rials, yielding prescribed optical responses 
to different combinations of light char-
acteristics such as the frequency, phase, 
angle of incidence, and polarization.[12–20]

The exotic optical properties of meta-
surfaces originate from the engineered 
light–structure interactions. The con-
ventional design approach heavily relies 
on template-based parameter sweep via 
numerical simulations to find eligible 

meta-atom structures, which could be facilitated by physical 
principles such as plasmonic resonance,[21] Mie theory,[22] or 
Pancharatnam–Berry (PB) phase for circular polarized light.[23] 
In the case of multifunctional metasurfaces, the design rou-
tines often utilize an empirical decoupling of the meta-atom 
response using multimode resonance in dielectric pillars,[24] 

As 2D metamaterials, metasurfaces provide an unprecedented means to 
manipulate light with the ability to multiplex different functionalities in a 
single planar device. Currently, most pursuits of multifunctional metasur-
faces resort to empirically accommodating more functionalities at the cost of 
increasing structural complexity, with little effort to investigate the intrinsic 
restrictions of given meta-atoms and thus the ultimate limits in the design. In 
this work, it is proposed to embed machine-learning models in both gradient-
based and nongradient optimization loops for the automatic implementation 
of multifunctional metasurfaces. Fundamentally different from the traditional 
two-step approach that separates phase retrieval and meta-atom structural 
design, the proposed end-to-end framework facilitates full exploitation of the 
prescribed design space and pushes the multifunctional design capacity to 
its physical limit. With a single-layer structure that can be readily fabricated, 
metasurface focusing lenses and holograms are experimentally demonstrated 
in the near-infrared region. They show up to eight controllable responses 
subjected to different combinations of working frequencies and linear polari-
zation states, which are unachievable by the conventional physics-guided 
approaches. These results manifest the superior capability of the data-driven 
scheme for photonic design, and will accelerate the development of complex 
devices and systems for optical display, communication, and computing.

1. Introduction

Different from bulk metamaterials, metasurfaces consist of 2D 
planar arrays of artificially engineered subwavelength struc-
tures, the so-called meta-atoms.[1–3] Empowered by the delicately 
designed structure and distribution of meta-atoms, the burst of 

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adma.202110022.

B. Xiong, R.-W. Peng, M. Wang
National Laboratory of Solid State Microstructures
School of Physics
and Collaborative Innovation Center of Advanced Microstructures
Nanjing University
Nanjing 210093, China
E-mail: rwpeng@nju.edu.cn
L. Deng, Y. Liu
Department of Electrical and Computer Engineering
Northeastern University
Boston, MA 02115, USA

Adv. Mater. 2022, 34, 2110022

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadma.202110022&domain=pdf&date_stamp=2022-03-09


© 2022 Wiley-VCH GmbH2110022  (2 of 11)

www.advmat.dewww.advancedsciencenews.com

combination of PB phase and resonant phase,[25,26] or spatially 
multiplexing single-responsive meta-atoms in segment,[27] 
interleaving,[28] or vertical stacking[29] configurations. Such 
design schemes usually fail to fully exploit the design space and 
become less practical as the number of multiplexed function-
alities increases. Some inverse design algorithms,[30] including 
gradient-based techniques such as adjoint method[31–34] or heu-
ristic approaches like genetic algorithm,[35,36] may be effective 
in some multitarget optimization problems of metasurfaces. 
However, gradient-based design algorithms are prone to be 
stuck in unsatisfactory local optimum, while heuristic optimi-
zation algorithms often require formidable amount of numer-
ical simulation that is impractical for large design space.

Very recently, deep learning and, more generally, statistical 
machine learning have revolutionized artificial intelligence 
researches by continuously pushing the state of the art of many 
traditional pattern recognition tasks, such as computer vision 
and natural language processing.[37] The accompanying data-
driven modeling has also produced powerful analytical tools 
in material sciences[38] and also new design paradigms for 
metamaterials.[39,40] Different from the conventional inverse 
design methods that manage to explore the design space fol-
lowing certain rules, deep learning models automatically learn 
the complex relationships between distinct photonic structures 
and their optical responses from sampled training data in the 
design space. Under such a data-driven approach, various 
deep learning models have been introduced in metamaterial 
design problems including multilayer perceptrons,[41–45] con-
volutional neural networks (CNNs),[46] generative adversarial 
networks,[47–49] and variational autoencoders (VAE).[50–52] Well 
trained on precollected data, these delicately constructed deep 
learning models can produce meta-atoms upon given optical 
requirements with high efficiency, fidelity, and diversity. By 
further pairing deep learning with genetic algorithms,[53,54] 
topology optimization,[55] or adjoint optimization,[56] the meta-
atoms generated by deep learning models can be refined with 
improved performance or assembled in fully functional meta-
surface devices.

In this work, we conceptually propose a statistical per-
spective to estimate the design capability of multifunctional 
metasurfaces and, consequently, demonstrate an end-to-end 
design pipeline to experimentally realize such physically lim-
ited optimal design in a given parameter space. So far, the 
multifunctional metasurface design, with either conventional 
parameter sweeps or algorithm-based inverse methods,[54] has 
followed a two-step, top-down design strategy. First, the design 
targets are manually decoupled into several subfunctions, and 
the ideal optical response distribution on the metasurface plane 
is retrieved. Subsequently, a finite number of meta-atom rep-
resentatives are designed to approximate the discretized phase 
and amplitude values. These approaches isolate the retrieval 
of required optical response distribution on metasurfaces and 
the design of individual meta-atoms, which can hardly scale 
up as the number of design targets and thus the complexity 
of the required meta-atom response increases. In contrast, we 
resort to statistical machine learning as the bridge that directly 
links the structural parameters of each single meta-atom and 
the target metasurface performance. The machine-learning 
model is composed of several probabilistic inverse retrieving 

models and a deterministic predicting model, which accurately 
capture and faithfully reproduce the statistical features of the 
high-dimensional joint distribution of meta-atom structures 
and their optical responses. Consequently, instead of artificially 
decoupling the complex optical response into independent 
subtargets,[57] a system-level multiobject optimization can be 
implemented by embedding the proposed machine-learning 
models in an end-to-end design loop with other algorithms 
according to specific metasurface functionalities. This design 
scheme, considering the nonideal meta-atom responses in an 
automatic optimization process, can fully exploit the design 
space to push the design capacity to its physical limit. For the 
first time, without involving spatial multiplexing or PB phase, 
multifunctional metasurface lenses and holograms are demon-
strated, which show up to eight distinct optical responses upon 
different combinations of frequencies and polarizations. Our 
design strategy and experimental demonstration will stimulate 
continual efforts of applying machine learning and other arti-
ficial intelligence techniques to transform the areas of optical 
design, integration, and measurement.

2. Results and Discussions

2.1. Metasurface Design Pipeline

We focus on metasurfaces operating in the reflective configu-
ration as a specific example. The statistical machine-learning 
model consists of a forward model that predicts reflection 
spectra from meta-atom design parameters, and an inverse 
model that retrieves possible meta-atom geometries from 
given phase requirements on the reflection spectra. From the 
perspective of a designer, the forward prediction of optical 
responses should be complete and accurate, including both 
amplitude and phase spectra with sufficient spectral resolu-
tion to capture all detailed features, while the inverse design of 
meta-atoms usually focuses on the phase response at a few spe-
cific frequencies and polarization states. Therefore, to account 
for such practical considerations, we construct both models 
based on deep neural networks (DNNs) but with different strat-
egies. For the predicting model, we use a delicately designed 
deep architecture to deterministically model the mapping from 
the design parameters to reflection spectra, while the retrieving 
model, which targets the one-to-many mapping from the given 
phase requirements to possible design candidates, is con-
structed as a stochastic generative model with light-weighted 
encoder–decoder configuration. The meta-atom under inves-
tigation is a reflective metal–insulator–metal (MIM) structure 
with three coupled rectangular resonators (CRR) on top, which 
supports pronounced and tunable plasmonic modes by varying 
the dimensions and separation distances of each rectangular 
component (nine geometric parameters in our case). This kind 
of meta-atoms has been utilized to expand the design flexibility 
in previous works such as controlling the dispersive response 
of the metasurface.[25,58] The machine-learning models are 
constructed to bidirectionally link the nine design parameters 
with the optical responses. We use a residual connection con-
figuration with a hybrid CNN and recurrent neural network 
(RNN) as predicting network, while the retrieving network is a 
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VAE-based generative model. The details on the parameteriza-
tion of the meta-atoms and the optical performances, architec-
ture and training setup of the machine-learning models can be 
found in Sections S1–S3 (Supporting Information).

After the machine-learning model for meta-atoms is estab-
lished, the well-trained retrieving model and predicting model 
can be seamlessly embedded in a complete design and optimi-
zation loop for fully functional metasurfaces, as schematically 
illustrated in Figure 1. A typical design process of a metasurface 
starts with a specific single design target or multiple design 
targets like versatile wavefront control functionalities under 
different incident conditions (Figure  1a). The design target 
will impose a required phase distribution on the metasurface 
plane, which determines the ideal optical response of each 
meta-atom. We would like to emphasize that it is not a trivial 
inverse problem to find the optimal structural parameter of a 
meta-atom from the desired phase response, especially in the 
case of multiple frequencies and polarizations. More often than 
not, it is even harder to estimate whether a physically feasible 
meta-atom structure exists for a given phase requirements or 
how such phase requirements can be better approximated with 
all the degrees of freedom in the design space. Armed with 
the retrieving model (Figure 1b), we can obtain a set of diversi-
fied meta-atom designs for each phase requirement, forming a 
meta-atom design pool (Figure  1c) for further selection. Since 
the retrieving model statistically reproduces the distribution 
of design parameters conditioned on phase requirements, 
the stochastically generated designs in the meta-atom pool 
are candidates that match or partially match the ideal phase 
requirements to the greatest extent. Then these candidates 
are fed to the predicting model (Figure 1d) that produces their 

precise amplitude and phase spectra. The amplitude and phase 
obtained from the deterministic predicting model are used to 
evaluate the design targets of the metasurface.

In conventional metasurface design processes, some user-
specified optimization algorithms, like gradient descent based 
on diffraction integral or the Gerchberg–Saxton (GS) algo-
rithm for holograms, are often employed to iteratively update 
the amplitude and phase distribution on the metasurface for 
optimal solution. However, these algorithms only optimize 
the optical response distribution, unable to directly modify the 
underlying meta-atom design parameters accordingly in an ab 
initio manner. Other heuristic optimization algorithms, like 
genetic algorithm or particle swarm algorithm, often require 
time-consuming numerical simulation to evaluate the target 
and are also quite sensitive to the initial value. Here, with the 
proposed machine-learning models embedded in the optimi-
zation iteration, the modifications of the amplitude and phase 
distribution on a metasurface can further backpropagate to 
update the meta-atom pool in either gradient-based or non
gradient-based methods. Even though in many cases, especially 
for multifunctional devices, the ideal optical response is not 
realizable by a physical meta-atom design, the proposed end-
to-end design scheme will exploit the whole design space to 
better approximate the ideal response and push the device per-
formance to its physical limit.

2.2. Evaluation of the Statistical Machine-Learning Model

To have a concrete idea about the design capacity and limitation 
of the CRR meta-atom, we first inspect the distribution of the 
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Figure 1.  End-to-end design pipeline for multifunctional metasurfaces. a) From the prescribed design target, b) the retrieving model stochastically 
generates c) the meta-atom design pool containing potential meta-atom candidates from given phase requirements, while d) the predicting model cal-
culates the optical response of each meta-atom to evaluate the device performance. The two machine-learning models are embedded in user-specified 
iterative optimization algorithms, allowing bidirectional information flow directly between the optical design target and the structural parameters of 
metasurface.
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complex reflection coefficients at certain frequencies. Here we 
employ frequency unit instead of wavelength to be consistent 
with the data collection procedure using frequency-domain 
solvers (see the “Experimental Section” for details). We pick a 
reference frequency of 270 THz and five comparing frequen-
cies of 280, 300, 320, 350, and 400 THz. The complex reflection 
coefficients for x-polarized incidence at these six frequencies in 
the entire test dataset are scattered as red dots in the top com-
plex planes of Figure 2a. For each frequency, the phases of the 
reflection coefficients cover a full range of 2π while the ampli-
tudes are mostly concentrated from 0.8 to 1. It means that at 
each single frequency, by tuning the design parameters, almost 
any specific phase value can be achieved with high reflection. 
Alongside the test data, we use our machine-learning model 
to generate some additional data by randomly sampling a 
phase value between 0 and 2π. Subsequently, the sampled 
phase requirements are fed to the retrieving model to find 
eligible meta-atom designs, and the complex reflection coef-
ficients are obtained by the predicting model, plotted as blue 
scatter points in the bottom panels of Figure 2a. The test data 
and model generated data show very good consistency in data 
distribution, manifesting the capability of our model to repro-
duce the statistical features of the high-dimensional reflection 
spectra. To illustrate the correlation in optical responses at dif-
ferent frequencies, we further confine the reflection coefficient 
at 270 THz in a sector from 0 to π/3, and plot the distribution 
of test data and model generated data in Figure 2b. Apparently, 
for the meta-atoms showing the restrained phase variation at 
270 THz, the reflection phase at some adjacent frequencies like 
280 and 300 THz also appear to be bounded in certain ranges. 
However, such characteristics gradually fade out as the fre-
quency increases. Little constraint is observed for the reflection 
coefficients at the two distant frequencies of 350 and 400 THz, 
which show almost 2π phase coverage same as the unbounded 
case in Figure 2a.

As noted above, although the reflection values from all the 
meta-atoms can cover a 2π phase range at a single frequency, 
the optical responses of individual meta-atoms at different 
frequencies are correlated, governed by the complex resonant 
features of the CRR meta-atom. Intuitively, due to the con-
tinuous nature of optical spectra, the reflection at two nearby 
frequencies should have larger interdependence than that at 
two frequencies far apart. To quantitatively describe the inter-
dependence among different frequencies and better illustrate 
the potency of the proposed statistical machine-learning model, 
we introduce mutual information (MI) of the complex reflec-
tions at two frequency points. Mutual information of a pair of 
random variables is defined as the Kullback–Leibler divergence 
of their joint distribution and the product of their marginal 
distributions, which equals zero if and only if the two random 
variables are independent. We estimate the mutual information 
for every pair of frequencies from 250 to 400 THz in a non-
parametric way using a k-nearest-neighbor-based estimator 
on all collected data.[59] The results are shown in Figure 2c for 
both x- and y-polarizations. Consistent with our intuition, the 
complex reflection exhibits strong interdependence when two 
frequencies are close to each other. The mutual information 
value for the five comparing frequencies in Figure  2a,b with 
respect to the reference frequency of 270 THz is annotated by 

the crossmarks along the white dashed line for x-polarization. 
Clearly, as the target frequency moves farther away from the 
reference of 270 THz, the mutual information between the two 
optical responses drops drastically. Another observation from 
the mutual information plot is that, at higher frequencies, the 
overall mutual information between a given frequency point 
and its near neighbors decreases, implying that one can achieve 
better control of the optical response of a multifrequency meta-
surface in higher frequency ranges.

To design specific multifunctional metasurfaces, we select 
four frequency values of 270, 350, 375, and 400 THz, which 
are assembled into three different design cases for both x- 
and y-polarizations, namely two-frequency case (350 and 
400 THz), three-frequency case (270, 350, and 400 THz), and 
four-frequency case (270, 350, 375, and 400 THz), respectively. 
To quantitatively estimate the difficulty of each multifunction 
design task with certain target frequency values, we calculated 
mutual information of the complex reflection coefficients over 
all pairs of adjacent frequencies in the selected target frequency 
values. Then these mutual information values are averaged, 
as plotted by blue circles in Figure  2d. Meanwhile, given the 
number of target design frequencies, we can iteratively search 
all possible frequency combinations in Figure  2c to find the 
minimum achievable average mutual information as calculated 
above. It forms a lower bound that quantitatively describes 
the interfunctional crosstalk for multifrequency and dual-
polarization metasurfaces (red squares in Figure  2d). Details 
on the minimum achievable mutual information and the cor-
responding frequency conditions can be found in Section S4 
(Supporting Information). Not surprisingly, as the number of 
target design frequency increases, the average mutual informa-
tion also increases, meaning stronger interdependence among 
the optical responses. Roughly according to the scatter plots in 
Figure 2b and the annotated mutual information in Figure 2c, 
for frequencies above 350 THz (with 270 THz as reference) or 
mutual information below 1.73, the interdependence between 
two frequency points will not destroy the 2π phase tuning 
range. Back to the design problem of multifunctional metasur-
faces, when the number of target design frequencies exceeds 
five with minimum achievable average mutual information 
above 2, controllable multifunctional responses is prohibitive 
due to the strongly interdependent response of meta-atoms at 
different frequencies. It should be noted that the mutual infor-
mation value is estimated from data and should not be regarded 
as an absolute measure in all cases. Nevertheless, it reflects the 
relative degree of interdependence of the optical responses at 
different frequencies. More discussions on the mutual informa-
tion value and the corresponding interdependent distribution 
of complex reflection coefficients can be found in Section S5 
(Supporting Information).

The interdependence of the meta-atom response at different 
frequencies can be more straightforwardly illustrated by cal-
culating the phase errors between random design targets and 
model predictions. A random phase requirement is defined and 
fed to the retrieving model, which can generate a meta-atom 
candidate. Then the full reflection spectra are obtained by the 
predicting model. The average discrepancy between the phase 
of the designed meta-atom and the predefined phase require-
ments is calculated as the phase error. Apparently, this phase 
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Figure 2.  Polar plots of the complex reflection coefficient distribution in the test dataset and in the model-generated dataset at specific frequencies. a) The 
full distribution of data with selected phase range covering entire 2π. b) The distribution of data when restricting the reflection phase at 270 THz from 0 to 
π/3, showing the interdependence among different frequencies. The outer circular boundary in the polar plots stands for reflection amplitude of 1. c) Mutual 
information (MI) estimated from training data between any two complex reflections in the frequency range of interest. d) Minimum achievable average 
mutual information as a function of the number of frequencies, in comparison with the mutual information for the three cases in our metasurface design. 
e) The histograms of phase errors between random design targets and model predictions for different number of frequency points for our device design.
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error indicates how accurate a given phase requirement can be 
physically realized, namely, the design limitation of the CRR-
based meta-atom for phase control. We have randomly sampled 
10 000 phase requirements for each case with two, three, or four 
frequencies of interest, and the error distribution averaged over 
two polarization states is plotted as histograms in Figure  2e. 
Consistent with the mutual information trend in Figure  2d, 
with the increasing number of required frequency points, the 
overall phase error also rises. For the two-frequency case, most 
retrieved phase errors are below π/8, meaning that the CRR 
meta-atom can rather independently tune the phase responses 
at two frequencies. When the frequency number reaches four, 
the physical intercoupling among different frequencies pushes 
the average phase error near π/4 for randomly generated phase 
requirements. Some of the retrieved meta-atom designs at spe-
cific phase requirements for two, three, or four frequencies are 
given in Section S6 (Supporting Information). These inverse 
design results verify the potency of our machine-learning 
model. It produces highly eligible designs if the phase require-
ments are realizable by the CRR meta-atom, or partially eligible 
designs that meet the phase requirements to the largest extent 
for phase targets beyond the optical response constraint of the 
CRR meta-atom, especially for the four-frequency cases.

2.3. Design and Experimental Demonstration of Multifunctional 
Metasurface

As discussed in the preceding section, the inherent interde-
pendence of the reflection coefficients at different frequencies 
and thus the entanglement among different functionalities is 
the primary barrier in designing multifunctional metasurfaces. 
Conventional solutions to this problem aim at manually decou-
pling each individual function, followed by either combining 
different phase tuning mechanisms or spatially multiplexing 
simple functionality-specific meta-atoms. Owing to the proposed 
machine-learning model that captures the statistical features of 
the design parameters and the corresponding optical responses 
with both predicting capability and retrieving capability, we can 
circumvent any empirical human intervention that prevents 
global optimization or exotic functionalities of the device. Con-
sequently, we are able to realize multifunctional metasurfaces 
with sophisticated performance unachievable before.

The first prototype device is a multifunctional lens that can 
focus reflected light with different combinations of polariza-
tions and frequencies at different spatial locations. As shown 
in Figure 3a, the design process starts from retrieving the ideal 
phase map by reversing the propagation of light from the target 
focal point to a specific point on the metasurface plane for each 
individual incident condition. Then the phase requirements are 
directly fed to the retrieving model to produce an initial meta-
surface design (dashed arrows), without the need to decouple 
individual functionalities. Subsequently, the optical response of 
every single meta-atom on the metasurface is calculated by the 
predicting model, from which the target function can be evalu-
ated by the focal intensity at each focal point through diffrac-
tion integral. As indicated by the solid arrows, gradient descent 
optimization can be readily performed through the fully differ-
entiable path of the predicting model and diffraction integral. 

During the optimization loop, we keep the weights in the 
neural networks fixed and calculate the gradients of the target 
function with respect to all the design parameters on the entire 
metasurface. The gradient information can efficiently guide the 
optimization process to improve the device performance. As for 
the target function, we devise a function of the intensity at each 
focal point, and account for both single point intensity and the 
balance among different focal points. More details about the 
choice of target function and the gradient descent optimization 
of the metasurface focusing lenses are described in Section S7 
(Supporting Information).

To experimentally verify our design, we fabricated three 
focusing lenses working at two frequencies (350 and 400 THz), 
three frequencies (270, 350, and 400 THz), and four frequencies 
(270, 350, 375, and 400 THz), respectively. All the devices have a 
dimension of 100 µm × 100 µm and a vertical focal distance of 
200  µm, where the transverse locations of the focal points are 
offset along either the x- or y-direction by 30  µm for different 
frequency–polarization combinations, as indicated by the sche-
matic of the target function in Figure 3a. The theoretically cal-
culated and experimentally measured intensity distributions 
of the reflected light on a cut plane of 200  µm away from the 
metasurface are presented in Figure 3b–d for each device. The 
experimental setup for metasurface measurement is described 
in Section S8 (Supporting Information). It is clear that all the 
metasurface lenses realize the designed functionalities, and the 
measured focusing results are in good agreement with the cal-
culation. We also notice that, as the number of target frequen-
cies increases, crosstalk begins to appear between different func-
tionalities, especially for the four-frequency metasurface. This 
observation is naturally evident given the phase retrieving error 
and the average mutual information among frequency points 
in Figure  2, indicating a stronger inherent interdependence as 
the number of target frequencies increases. Albeit more than 
one hotspot can be observed in some experimental results (e.g., 
350 and 375 THz cases in Figure 3d), the light intensity at the 
designed focal point is always much higher than those unwanted 
hotspots caused by crosstalk between working frequencies.

It should be noted that the conventional two-step, top-down 
design approach can hardly tackle this multipurposed design 
task. Let us consider discretizing the phase response into eight 
bins with a π/4 step, comparable with the average phase error 
for the four-frequency case in Figure 2e. A four-frequency dual-
polarization design requires over 16 million (= 88) meta-atom 
candidates, while even a three-frequency dual-polarization case 
needs 262 144 (= 86) meta-atom candidates to cover all the pos-
sible discretized phase requirements on the metasurface. Such 
a huge number of meta-atom candidates are prohibitive to be 
prepared by a conventional iterative sweep over the nine design 
parameters. From the perspective of the design parameters, if 
a grid search is made over the nine design parameters with a 
very sparse sampling number of 4 for each parameter, there 
will be over 260 000 trials to evaluate, far more than the total 
70 000 data that we collected to train the machine-learning 
model. Therefore, traditional brute-force search of meta-atoms 
is not feasible for multifunctional metasurface design with a 
large number of design parameters or target functionalities. In 
contrast, aided by the statistical learning model, we can fully 
exploit the design space beyond the capability of traditional 
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methods to achieve up to eight different functionalities. As 
mentioned before, some of the phase requirements can only 
be partially realized due to the physical design constraints of 
the meta-atoms. In order to further push the design capacity to 
limit, the machine-learning model is embedded in the gradient 
descent optimization loop, which improves the overall device 
performance by over 10% compared with the initial design (see 
Figure S5 in the Supporting Information).

Besides gradient-based optimization, the proposed statistical 
machine-learning model can also be flexibly embedded in other 
nongradient iterative optimization algorithms. As depicted 
in Figure 4a, the retrieving model and predicting model are 
embedded in the GS algorithm for multifunctional metasur-
face holograms. The conventional GS algorithm approximates 
the light diffraction by fast Fourier transformation (FFT) and 
employs an iterative process of FFT followed by inverse FFT 
(IFFT) to calculate the required phase distribution of a phase-
only hologram for the target image. The GS algorithm is a 

nongradient optimization process that updates the required 
phase distribution while forcing a unit amplitude in each itera-
tion. After inserting the proposed statistical learning models in 
the optimization loop, the retrieved ideal phase in each itera-
tion is mapped to a physical meta-atom design by the retrieving 
model. The actual optical response, which may deviate from the 
ideal case, is calculated by the predicting model to estimate the 
reconstructed target images. Therefore, by linking the design 
and physical domains, the proposed machine-learning model 
enables us to consider the nonideal phase retrieval, which may 
become severe especially in the case of multifunctional meta-
surface holograms generating distinct images under different 
illumination conditions.

Similar to multifunctional lenses, we fabricated three multi-
frequency dual-polarization metasurface holograms working at 
two frequencies (350 and 400 THz), three frequencies (270, 350, 
and 400 THz), and four frequencies (270, 350, 375, and 400 THz),  
respectively. As shown in Figure  4b–d, we use letters “A”,  

Adv. Mater. 2022, 34, 2110022

Figure 3.  Multifunctional focusing lenses realized by embedding the statistical machine-learning model in a gradient-based optimization loop. 
a) Flowchart of the design and optimization process, with one scanning electron microscopic image of the fabricated device. The dashed arrows stand 
for initialization step. b–d) The calculated and experimentally measured focusing results for the two-frequency device (b), the three-frequency device 
(c), and the four-frequency device (d). The scale bars in the calculated intensity map stand for 20 µm.
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“D”, “E”, and “H”, in either upper or lower case as the target 
images for different combinations of frequencies and polariza-
tions. The device size of 200 µm × 200 µm and the Fresnel dif-
fraction amendment to FFT are used in the GS algorithm itera-
tions to separate the image plane at 300, 400, 500, and 600 µm, 
respectively, as annotated in Figure  4b–d. The experimental 

measurements agree well with the calculated images by Ray-
leigh–Sommerfeld diffraction integral, verifying the capability 
of the proposed design method. Affected by the crosstalk 
among different functionalities, the signal-to-noise ratio deteri-
orates as the number of target frequencies increases. It should 
be noted that the designed reflective holograms solely depend 

Adv. Mater. 2022, 34, 2110022

Figure 4.  Embedding the statistical learning model in the GS algorithm for multifunctional metasurface holograms. a) Flowchart of the iterative design 
process, with one scanning electron microscopy image of the fabricated device. b–d) The calculated and experimentally measured hologram images 
for the two-frequency device (b), the three-frequency device (c), and the four-frequency device (d).
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on the plasmonic resonance of CRR meta-atoms. Different 
from the PB phase in a cross-polarized input–output configura-
tion, in our case, the co-polarized reflection cannot be filtered 
out to improve the image quality. Nevertheless, to the best of 
our knowledge, the eight distinct images under different com-
bined illumination conditions of two orthogonal linear polariza-
tions and four frequencies are the most independent channels 
experimentally achieved by a metasurface hologram.

In addition to simple alphabetic letters, we also test our 
model to design polarization-multiplexed multicolor holo-
grams. As shown in Figure 5, the target image is a flower for 
x-polarized incidence and a three-color palette for y-polarized 
incidence. We decompose each image into red, green, and blue 
components, which represent the working frequencies of 270, 
350, and 400 THz, respectively. Using the same design pro-
cess as described in Figure 4a, a 200 µm × 200 µm hologram 
is designed and fabricated with the same imaging distance of 
500  µm for all frequencies and polarizations. The measured 
hologram images are demonstrated in Figure  5 together with 
the target images and theoretically calculated images by diffrac-
tion integration. Consistent with the design targets, the meta-
surface projects two distinct colorful images for two different 
polarizations, while the resolution of the reconstructed images 
can be further improved with the increased metasurface size to 
accommodate more meta-atoms.

3. Conclusions

We have conceptually proposed and experimentally demon-
strated the application of statistical machine learning in the 
design and optimization of complex multifunctional metas-
urfaces. Mutual information is introduced to quantitatively 

describe the interdependent optical responses at different 
frequencies, which provides practical guidelines to estimate 
the capacity of the design space. Unlike conventional design 
methods that try to manually decouple different functionali-
ties, the proposed model captures the statistical features among 
meta-atom structures and their optical responses, enabling us 
to push the design capacity of the meta-atom to its limit. By 
embedding the statistical machine-learning model in either gra-
dient-based or nongradient-based optimization, multifunctional 
metasurfaces can be systematically designed in an end-to-end 
manner. We successfully realize metasurface focusing lenses 
and holograms, which show up to eight controllable function-
alities for different combinations of working frequencies and 
polarization states, far beyond the design capability of tradi-
tional approaches. It should be noted that the machine-learning 
model employed in this work is a general inverse design solu-
tion that is not limited to CRR meta-atoms based on plasmonic 
resonances. Other multitarget phase tuning mechanisms like 
the PB phase or spatial multiplexing can also be included by 
modifying the model and the corresponding training data. The 
proposed design framework with embedded statistical machine-
learning models opens up a new avenue for automatic, efficient 
and multiobjective design of complex metasurfaces, which 
enhances the advantages of metasurfaces over traditional bulk 
optical components and will significantly accelerate the applica-
tion of flat optical devices in real-world scenarios.

4. Experimental Section
Dataset Collection and Model Setup: The training data were collected 

by sampling the design space and numerically calculating the 
corresponding reflection spectra. The nine design parameters were first 
sampled independently from a uniform distribution using the Monte 

Figure 5.  Target, calculated, and experimentally measured multicolor hologram images for both x- and y-polarizations. The false colors red, green, and 
blue correspond to 270, 350, and 400 THz, respectively.
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Carlo method, in the range from 40 to 280  nm for the widths (w1, w2, 
and w3) and lengths (l1, l2, and l3), and from 40 to 120 nm for the gaps 
(g1, g2, and g3). Then the sampled parameters were filtered to ensure that 
the CRR structure was confined within the unit cell by a margin of 30 nm 
or larger in both the horizontal and vertical directions. The qualified 
designs were fed to commercial simulation package CST Studio Suite 
to obtain the corresponding reflection spectra using a frequency domain 
solver. In the simulation, the SiO2 spacer was modeled as a lossless 
dielectric with a refractive index of 1.45, and gold was treated by the 
Drude model. Using the frequency domain solver with a step of 1 THz, 
the calculated complex spectra for both x- and y-polarizations were 
discretized into 151 data points, and then decomposed into amplitude 
and phase components. With the above parameterization, each data 
pair consisted of a 1 × 9 design vector and a 4 × 151 reflection matrix. In 
total, 70 000 labeled data were collected, among which 65 000 were used 
as training data, and 5000 were used as test data.

The data collection was automatically performed with the Python 
programming interface of CST Studio Suite, while all other parts of 
the design algorithms were also written in Python, including the deep 
learning models, gradient descent algorithms, and GS algorithms. 
The neural network models were constructed under the open-source 
machine-learning framework of PyTorch. In the training process of 
both predicting and retrieving models, a batch size of 100 and an initial 
learning rate of 0.001, which was decayed by a scale factor of 0.2 after  
50 epochs, were used. An Adam optimizer was used to train the model 
for 100 epochs with an early stop mechanism.

Device Fabrication: First, a layer of 150 nm Au film was evaporated on 
a Si substrate with 10 nm Ti as adhesion layer. A 60 nm thick SiO2 spacer 
was then deposited using plasma-enhanced chemical vapor deposition 
(PECVD) technique. Following that, a layer of poly(methyl methacrylate) 
(PMMA) was spin-coated on the spacer, which was then patterned by 
the e-beam exposure process. After development, another layer of 
50/10 nm thick Au/Ti was evaporated, and the final CRR structures were 
defined by a lift-off process. Some images of the fabricated devices can 
be found in Section S9 (Supporting Information).

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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