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Connecting topological states with p-orbital freedom has led to rich, insightful physics phenomena. Yet
topological corner states have rarely been associated with modes of higher orbitals than p orbital due to the
entanglement proneness of higher orbital bands in photonics. This paper theoretically investigates higher orbital
corner states in a two-dimensional (2D) Su-Schrieffer-Heeger (SSH) lattice and experimentally demonstrates
octopole orbital corner states in a terahertz spoof plasmonic crystal. The orbital Hamiltonian is derived by
introducing a pair of orthogonal orbitals into a 2D SSH lattice tight-binding model. Based on the expanded lattice,
the presence of orbital corner states is demonstrated, which can be characterized by the generalized winding
number. The counterpart of the tight-binding model in plasmonic crystals is identified, revealing eight octopole
corner states. These states, comprising four even and four odd modes, are demonstrated through eigenenergy
spectra and field distributions. Interestingly, the octopole corner states emerge without orbital-hopping symmetry,
which differs from the p-orbital corner states in previous reports. Experimentally, we verify the emergence
of octopole orbital corner states in the terahertz frequency range by designing spoof plasmonic crystals with
a 2D SSH lattice. Through terahertz time-domain spectroscopy, these corner states are directly observed via
spatial mapping of the electric field intensity. We suggest that these results shed light on the unique physics
of the interplay between topological phases and higher-order orbitals and broaden the potential application
opportunities of plasmonic crystals in particle trapping and biosensing.
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I. INTRODUCTION

By implementing the quantum Hall effect in classical sys-
tems [1,2], many topological schemes have been explored in
different platforms [3], such as the quantum spin Hall effect or
quantum valley Hall effect associated with spin [4–6] or val-
ley [7–11] degree of freedom (DOF). In addition, the orbital
properties, another fundamental feature describing the spatial
distribution of wave functions inside the unit cell of crystals,
unveil the great significance of exotic topological matter. The
orbital bands play an essential role in correlated electronics
[12] and solid-state materials [13], such as orbital superflu-
idity [14], topological semimetals [15], and superconductors
[16]. By harnessing the orbital DOF, exotic band structures
may emerge, such as a Dirac cone and flat band for the
p-orbital bands of the honeycomb lattice [17–20] and the Lieb
lattice [21]. These achievements have been facilitated by pur-
posely engineering higher orbital bands in diverse platforms
such as optical lattices of ultracold atoms [17], semiconduc-
tor polariton lattices [18,19], and artificial electronic lattices
[20,21]. Moreover, the orbital study has also been extended
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to topological insulators. In particular, the robust orbital edge
states have been verified in photonic honeycomb lattices
made of coupled micropillars [22], zigzag-arranged dielectric
spherical particles [23], and acoustic lattices [24,25]. Further,
topological lasing has been realized based on edge modes
supported by polariton micropillars [26]. Additionally, the
orbital features can be used to construct pseudospin DOFs [5]
and manipulate the topological phase transition [27]. These
investigations expand the scope of topological phases based
on orbitals.

Recently, intrinsic orbitals have been used to investigate
higher-order topological insulators (HOTIs) with edge states
two or more dimensions lower than the bulk [28–35]. Orbital
corner states have been theoretically proposed by loading
p-orbital freedom in photonic breathing kagome lattices
(BKLs) [36]. Thereafter, p-orbital corner states have been
experimentally demonstrated in BKLs of waveguide arrays
[37]. In addition, a photonic quadrupole topological insulator
has been achieved by leveraging both s- and p-orbital-type
modes in inducing synthetic flux [38]. Meanwhile, orbital
HOTIs have also been reported in acoustic systems. In
particular, type-I and type-II corner states stemming from
p-orbital interactions were theoretically proposed and exper-
imentally observed in acoustic BKLs [39]. Based on unique
p-orbital hopping patterns, the unusual higher-order topology
was demonstrated in puckered lattice acoustic metamaterials
[40]. Apart from p orbitals, higher-order orbitals have also
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attracted much attention. For instance, plasmonic higher-order
topological states with orthogonal nondegenerate orbital-like
hexapole modes were experimentally demonstrated based on
BKLs [41]. Generally, introducing orbital DOFs can sig-
nificantly enrich the coupling configurations within lattice
systems, offering unique avenues for exploring topological
physics.

Up to now, most research on orbital-related topologi-
cal phases has been associated with p-orbital modes, and
experimental realization of orbital corner states has been im-
plemented in BKLs, where the coupling of orbital hopping
has been unveiled. As a comparison, the orbital corner states
in a two-dimensional (2D) Su-Schrieffer-Heeger (SSH) lattice
have been theoretically proposed [42]. However, the coupling
between two types of p-orbital hopping was not considered,
where the band structure could be decoupled into two sets of
s bands. Corresponding to s bands [29,30], the higher-order
topological states in a 2D SSH lattice have been extensively
studied, yet the orbital corner states related to higher orbital
bands were overlooked when the couplings of orbitals hop-
ping existed in the system, although the p-orbital corner states
were demonstrated based on the dipole mode in the plasmonic
crystals with BKLs [36]. Actually, the multipolar plasmonic
modes with anisotropic field distributions appear at higher
frequencies, and usually have sharper resonances than the
dipole mode of localized surface plasmons, and hence provide
us with potential opportunities of applications in the design
of antennas [43,44], sensors [45–47], and nanolasers [48].
Motivated by these considerations, we may explore the higher
orbital corner states based on the octopole mode in plasmonic
crystals.

This work theoretically investigates higher orbital HOTIs
in the 2D SSH lattice and experimentally demonstrates oc-
topole topological corner states in terahertz spoof plasmonic
crystals. Based on the tight-binding model, we derive the
higher orbital Hamiltonian, where the coupling between two
types of orbital hopping has been included by introducing
a pair of orthogonal orbital bases set in a 2D SSH lattice.
By using expanding lattices, orbital corner states depending
on the orbital coupling strength are obtained. Subsequently,
the generalized winding number is calculated to unveil the
nontrivial topological property of orbital corner states in a
2D SSH lattice. To visualize orbital corner states, the plas-
monic crystals are analogous to the tight-binding model by
calculating the eigenmodes of a single cavity and coupling
configurations of two cavities. The eigenfrequency spectrum
and field distributions are simulated by introducing the or-
bital coupling strength proposed in the tight-binding model,
and octopole corner states are demonstrated in a truncated
square-shaped 2D SSH plasmonic crystal. Experimentally, we
design and fabricate the spoof plasmonic crystals, and directly
observe the octopole corner states in the terahertz regime by
mapping the electric field intensity. Our approach can be ex-
tended to other systems and applied to other orders of orbital
corner states. We suggest that these investigations shed light
on the unique physics of the interplay between higher-order
topological phases and orbital modes.

This paper is organized as follows. After the introduction,
in Sec. II, the higher orbital Hamiltonian based on a 2D
SSH lattice tight-binding model is derived, and orbital corner

states are demonstrated by calculating the eigenenergy spectra
of a finite structure. Thereafter, in Sec. III, the topological
invariant characterizing orbital corner states is investigated.
In Sec. IV, the counterpart for the tight-binding model in a
photonic system is identified, and the octopole corner states
are demonstrated based on eigenenergy spectra and field dis-
tributions in a truncated square-shaped 2D SSH plasmonic
crystal. In Sec. V, a spoof plasmonic crystal with a 2D SSH
lattice is designed to establish octopole corner states in the
terahertz frequency. Then, the terahertz experiments are im-
plemented to confirm the existence of octopole corner states
in the fabricated finite structure of the spoof plasmonic crystal.
The results are summarized in Sec. VI.

II. HIGHER ORBITAL CORNER STATES BASED
ON TIGHT-BINDING MODELS

We consider a 2D SSH lattice as shown in Fig. 1(a), and
the unit cell consists of four nodes denoted by {1, 2, 3, 4}. The
solid and dashed lines in Fig. 1(a) stand for the intracell (t1)
and intercell (t2) hopping, respectively. Generally, when the
hopping strength t1 < t2, the 2D SSH lattice falls into a non-
trivial topological phase, which supports robust corner states
reported previously in single orbital HOTIs [29,30]. Here, we
introduce orbital DOFs to this typical model. For a single
lattice site, p, d, f, and g orbitals, as depicted in Fig. 1(b), occur
in pairs and are orthogonal in the same order. As a result,
interactions between two neighboring sites are analogous to
the bonding and antibonding states of two atoms in condensed
matter. Here, we take the g orbital as an example. There arise
four coupling configurations: σ -like bonding, π -like bonding,
π -like antibonding, and σ -like antibonding, as illustrated in
Fig. 1(c).

By introducing a pair of orthogonal orbital modes within
each site in a 2D SSH lattice, and considering the nearest-
neighbor couplings, the higher orbital bulk Hamiltonian in
real space can be expressed as

H =
∑

r

[
tσ1(b

†

r,1ar,1 + c
†

r,2br,2 + d
†

r,3cr,3 + a
†

r,4dr,4)

+ tσ2
(
b

†

r−e1,1ar,1 + c
†

r−e2,2br,2 + d
†

r−e3,3cr,3 + a
†

r−e4,4dr,4
)

+ tπ2
(
b̃

†

r−e1,1ãr,1 + c̃
†

r−e2,2b̃r,2 + d̃
†

r−e3,3c̃r,3 + ã
†

r−e4,4d̃r,4
)

+ tπ1(b̃
†

r,1ãr,1 + c̃
†

r,2b̃r,2 + d̃
†

r,3c̃r,3 + ã
†

r,4d̃r,4)
] + H.c.,

(1)

where tσ1 (tσ2) and tπ1 (tπ2) correspond to the intracell
(intercell) σ -like and π -like coupling strengths, respectively.
ar (ãr), br (b̃r), cr (c̃r), and dr (d̃r) denote the σ -like (π -like)
annihilation operators at the sites 1, 2, 3, and 4 in a unit
cell located at position r, respectively. The subscripts 1, 2,
3, and 4 in Eq. (1) indicate the projection direction of the
operator along the lattice vectors ei (i = 1, 2, 3, and 4), as
shown in Fig. 1(a). In order to obtain the band structure,
we take the Fourier transformation for the real basis of the
Hamiltonian in Eq. (1). By harnessing the eight-component
spinor, ψ = [ak,x, ak,y, bk,x, bk,y, ck,x, ck,y, dk,x, dk,y]T , the
Hamiltonian can be described by H = ∑

k ψ†H (k)ψ . More
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FIG. 1. (a) The schematic diagram for the tight-binding model. The red line represents a unit cell. The coupling strength is denoted as
t1 and t2, respectively. (b) Illustrations of 2D orbitals for p, d, f, and g orbitals, respectively. (c) The schematic diagram of the 2D orbital
coupling for g orbitals. Band structures of the higher orbital model with the hopping parameters (d) |tπ1/tσ1| = |tπ2/tσ2| = 0.1, tσ1/tσ2 = 0.05;
(e) |tπ1/tσ1| = |tπ2/tσ2| = 0.91, tσ1/tσ2 = 0.01; and (f) |tπ1/tσ1| = 0.81, |tπ2/tσ2| = 0.91, tσ1/tσ2 = 0.01. The first Brillouin zone of a square
lattice is shown in the inset in (d). The right panels in (e) and (f) show the enlarged views of the energy bands in the dashed boxes, respectively.

specifically, the matrix H(k) takes the form of

H (k) = −

⎡
⎢⎢⎢⎢⎣

0 D†
1 0 D4

D1 0 D†
2 0

0 D2 0 D†
3

D†
4 0 D3 0

⎤
⎥⎥⎥⎥⎦, (2)

where the symbol † denotes the Hermitian conjugate, and

D1, D2, D3, and D4 represent D1 = D3 =
[

fπ1 0
0 fσ1

]
,

D2 = D4 =
[

fσ2 0
0 fπ2

]
with fσ i = tσ1 + tσ2eik·ei and fπ i =

tπ1 + tπ2eik·ei ; ei (i = 1, 2) denotes the unit vectors along the
hopping direction between the nearest neighboring sites. Re-
markably, the coupling between two types of orbital hopping
is included in the orbital Hamiltonian (2), since it cannot
be decomposed into two independent Hamiltonians associ-
ated with orthogonal orbital hopping. By diagonalizing the
Hamiltonian matrix in Eq. (2), we achieve the band struc-
tures with different orbital coupling strengths. We choose
the hopping amplitude tσ2 as the energy unit of the model,
i.e., setting tσ2 = −1 hereafter in this paper. As shown in
Figs. 1(d)–1(f), for each case, the band structure demonstrates
eight distinct orbital bands since the Hamiltonian matrix

has been expanded into an 8 × 8 matrix by loading higher
orbital freedom in a 2D SSH lattice. By tuning the ratio
of two types of orbital coupling strength, the shape of the
band structure is deformed. Notably, the orbital bands are
symmetric with respect to zero energy, suggesting that the
chiral symmetry is preserved in the system. Around zero
energies, the band gaps are observed. Figures 1(d) and 1(e)
demonstrate the band structures when the orbital coupling
ratios within and between cells are identical, i.e., |tπ1/tσ1| =
|tπ2/tσ2|. The condition of |tπ1/tσ1| = |tπ2/tσ2| indicates that
the orbital-hopping symmetry is analogous to previous works,
where p-orbital topological corner states have been demon-
strated [36,37,39]. Besides, Fig. 1(f) shows the band structure
when the orbital coupling ratios within and between cells
are different, i.e., |tπ1/tσ1| �= |tπ2/tσ2|. Meanwhile, the orbital
coupling ratios are sensitive to the change of distance between
two coupling sites, which may be associated with modes of
higher orbitals than the p orbital. Here, we focus on the case
of |tπ1/tσ1| �= |tπ2/tσ2| to explore the emergence of orbital
corner states.

To reveal the topological phases, we further calculated
the eigenenergy spectra of a truncated square-shaped or-
bital 2D SSH lattice possessing four unit cells on each side,
with |tπ1/tσ1| = 0.81, |tπ2/tσ2| = 0.91, and tσ1/tσ2 = 0.01 [as
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FIG. 2. (a) The eigenenergy spectra of a finite (with 4 × 4 unit
cells) structure based on the tight-binding model with |tπ1/tσ1| =
0.81, |tπ2/tσ2| = 0.91, and tσ1/tσ2 = 0.01. The red stars represent
orbital corner states, which are pinned at zero energy. (b) Energy
spectra for a finite square-shaped lattice with different coupling ratios
tσ1/tσ2 as |tπ1/tσ1| = 0.81 and |tπ2/tσ2| = 0.91. (c) Energy spectra
for a finite square-shaped lattice with different coupling ratios tπ1/tσ1

as |tπ2/tσ2| = 0.91 and tσ1/tσ2 = 0.01. (d) Energy spectra for a fi-
nite square-shaped lattice with different coupling ratios tπ2/tσ2 as
|tπ1/tσ1| = 0.81 and tσ1/tσ2 = 0.01.

shown in Fig. 2(a)]. It follows that there are eight degenerated
corner states located at zero energy between a band gap.
Further, the impact of different coupling parameters on the
orbital corner states is investigated in Figs. 2(b)–2(d). The
energy spectra are calculated as a function of tσ1/tσ2 in the
conditions |tπ1/tσ1| = 0.81 and |tπ2/tσ2| = 0.91, as shown in
Fig. 2(b). The higher orbital topological corner states denoted
by the red line arise for small tσ1/tσ2 ratios. To test the mu-
tual interactions of orbital hopping, the energy spectra are
calculated as a function of the orbital interaction tπ1/tσ1 and
tπ2/tσ2, respectively, as shown in Figs. 2(c) and 2(d), where
the intracell and intercell hopping ratios are kept constant with
tσ1/tσ2 = 0.01. It follows that the orbital interactions between
the intercell have a greater effect on the generation of orbital
corner states than those of the intracell. Consequently, the
emergence of orbital corner states depends not only on the
relative coupling strength between intracell and intercell but
also on the relative orbital coupling strength.

III. ANALYSIS OF TOPOLOGICAL INVARIANT BASED
ON HIGHER ORBITAL HAMILTONIAN

In order to confirm that the system based on higher orbital
modes is indeed a topologically protected HOTI, the general-
ized winding number is employed to identify the topological
properties of the higher orbital corner states. The expanded
square lattice can be regarded as the generalization of the 1D
SSH model, and it can be divided into four subgroups with the
components of the Hamiltonian matrix due to C4 symmetry.

The generalized winding number can be defined as [37,49]

Wi = 1

2π

∫ 2π

0
dki

d�i(ki )

dki
, (3)

where ki is the wave vector along the direction ei (i =
1, 2, 3, 4) and varies across the Brillouin zone. �i(ki ) is the
argument of det[H ′

i (k)], and H ′
i (k) is the matrix elements of

H ′(k) along the ei direction. The winding number along the ki

direction describes the whole system, where we have W1 =
W2 = W3 = W4, as the C4 symmetry is maintained in the
system. Here, the auxiliary Hamiltonian H ′(k) is introduced,
which is derived from a unitary transformation of H (k). The
transform matrix operator is defined as

R =

⎡
⎢⎢⎣

r1 0 0 0
0 r2 0 0
0 0 r3 0
0 0 0 r4

⎤
⎥⎥⎦, (4)

where ri = r(θi) =
[

cos θi − sin θi

sin θi cos θi

]
(i = 1, 2, 3, 4), θ1 =

π/2, θ2 = π , θ3 = 3π/2, and θ4 = 0, respectively. Then, the
auxiliary Hamiltonian can be derived as H ′(k) = R†H (k)R,
and its specific form takes

H ′(k) =

⎡
⎢⎢⎢⎢⎣

0 H ′†
1 0 H ′

4

H ′
1 0 H ′†

4 0

0 H ′
2 0 H ′†

3

H ′†
2 0 H ′

3 0

⎤
⎥⎥⎥⎥⎦, (5)

with H ′
i =

[
tσ1 + tσ2eiki 0

0 tπ1 + tπ2eiki

]
r(3π/2). The concrete

form of generalized Pauli matrix σi (for ki direction) becomes

σ1 =

⎡
⎢⎢⎣

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, σ2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

⎤
⎥⎥⎦,

σ3 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦, σ4 =

⎡
⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦.

(6)

As a result, H ′(k) can be decomposed to

H ′(k) =
∑

i

σi⊗H ′
i + H.c. (7)

Then, the determinant can be denoted as di(ki ) =
det[H ′

i (ki )] = (tσ1 + tσ2eiki )(tπ1 + tπ2eiki ). When we put
this complex number on the complex plane, it represents a
vector. The vectors di(ki ) describing the geometrical features
of the generalized winding number for the 2D SSH lattice are
given by

di(ki ) = (Re[di(ki )], Im[di(ki )])T . (8)

In this way, topological invariants can be obtained via the
number of times that the amplitude of di(ki ) goes around the
origin of the dix-diy plane as the momentum coordinate ki

sweeps across the Brillouin zone. In Fig. 3(a), we plot the
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FIG. 3. (a) The curve illustrates the winding for the point of
the star with the parameters |tπ1/tσ1| = 0.81, |tπ2/tσ2| = 0.91, and
tσ1/tσ2 = 0.01. (b) Generalized winding numbers with varying pa-
rameters. The star corresponds to this work, and the dark open dots
denote the other systems [36,37,39], which are always lying on the
white dashed diagonal line.

complex curves described by the end point of the d1(k1) vector
in Eq. (8) with the parameters |tπ1/tσ1| = 0.81, |tπ2/tσ2| =
0.91, and tσ1/tσ2 = 0.01. Specifically, the closed curve corre-
sponds to the point of the star in Fig. 3(b), where the number
of loops of di around the origin matches the winding-number
value W = 2.

It follows that we can summarize the phase diagram of
the generalized winding number as functions of |tσ1/tσ2| and
|tπ1/tπ2| as illustrated in Fig. 3(b). The generalized winding
number has three values, which are W = 2 for orbital corner
states, whereas W = 0 according to a topologically trivial
situation. The case for W = 1 indicates that only one orbital
is topologically nontrivial while the other is trivial. Intuitively,
one might think that half of the corner states should persist.
However, as the trivial and nontrivial subspaces are coupled,
the corner states of the whole system merge into the bulk state
[37], and no corner states exist within the band gap. Moreover,
the value of tσ1/tσ2 plays an essential role in determining the

FIG. 4. (a) Schematic diagram for the photonic square lattice. The white circles represent cavities with radii r0. d1 and d2 represent the
distances between the nearest cavities. Here, the radius of each air cavity is fixed at r0 = 100 nm in the related calculations. (b), (i) shows
the calculated eigenfrequencies for a single air cavity (the inset). (ii) shows the field distribution Ez for partial eigenmodes, which are p-, d-,
f-, and g-orbital modes from the left to right columns, respectively. (c) The calculated spatial field distributions of four distinct eigenmodes
in the two coupled cavities for g orbitals, where the distance of two cavities is set as d = 300 nm. (d) |tπ/tσ | as a function of the coupling
distance d between two cavities for g orbital. (e) The spectrum of eigenfrequency deviation δ f = f − f0, where f0 = 3155.384 THz, and f
denotes the eigenfrequency of the truncated plasmonic crystal with 4 × 4 unit cells. Here d1 = 350 nm and d2 = 250 nm. (f) Electric field in
the quarter area of the 4 × 4 unit cells corresponding to the eight orbital corner states in (e) with four even modes (the top row) and four odd
modes (the bottom row). The right top and bottom panels show one of the enlarged corner states in the top and bottom rows, respectively. In
the calculations, the unit of electric field Ez is V/m.
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existence of the orbital corner states. This coincides with the
condition for the emergence of a single orbital corner state.

IV. OCTOPOLE CORNER STATES
IN PLASMONIC CRYSTALS

Subsequently, we identify the photonic counterparts of our
higher orbital model for implementation in a photonic system.
The designed photonic system consists of a 2D SSH lattice of
circular air cavities embedded in a metallic background, as
depicted in Fig. 4(a), and the details are presented in the inset
of the right panel. The permittivity of background materials is
expressed as a Drude metal, ε = 1 − ω2

p/(ω2 + iγω), where
the plasmon frequency of aluminum ωp = 2.29 × 1016 s−1

is adopted, and the Drude loss γ is ignored for the sake of
simplicity. The calculations are carried out with a commercial
software package (COMSOL MULTIPHYSICS), and trans-
verse magnetic polarizations are considered. In Fig. 4(b), the
calculated eigenfrequencies for a single air cavity (schemat-
ically shown in the inset) are demonstrated in (i). The
calculated electric fields Ez of some eigenmodes for a single
air cavity are shown in (ii) of Fig. 4(b). It is demonstrated
that an air cavity hosts multiple eigenmodes, such as dipole,
quadrupole, hexapole, and octopole modes, just as p, d, f, and
g orbitals, respectively, of atoms from quantum mechanics.
For each order of orbitals, a pair of degenerate orthogonal
modes exists [as shown in each column of (ii) in Fig. 4(b)].

Two coupled cavities may result in symmetry and anti-
symmetry modes. For g-orbital eigenmodes, there are four
coupling configurations: σ -like bonding, π -like bonding, π -
like antibonding, and σ -like antibonding, which correspond
to the increasing resonant frequencies ω

g
σ , ω

g
π , ω

g
anti−π , and

ω
g
anti−σ , respectively [as shown in Fig. 4(c)]. Since the field

distribution of each eigenmode is tightly localized within an
individual air cavity, the interaction between adjacent cavi-
ties originates from the coupling of evanescent waves in the
metallic host medium. We define two hopping parameters
as tσ and tπ to characterize the interplay between coupled
cavities corresponding to σ -type bonding and π -type bond-
ing coupling, respectively. According to [34] and [36], the
hopping parameters are determined by tσ ∝ (ωg

σ − ω
g
anti−σ )/2

and tπ ∝ (ωg
anti−π − ω

g
π )/2, where the hopping amplitudes

between two coupled cavities are determined by half of the
difference of the frequencies of the even and odd hybridized
modes. Subsequently, the ratio of hopping amplitude tπ/tσ can
be obtained. Figure 4(d) shows the ratio of hopping ampli-
tude |tπ/tσ | = |ωg

anti−π − ω
g
π |/|ωg

σ − ω
g
anti−σ | [34,36] against

the coupling distance d between two cavities. It is evident
that |tπ/tσ | decreases linearly with the distance d. Further,
the range of |tπ/tσ | is from 0.91 to 0.81 when d varies from
250 nm to 350 nm.

To visualize the higher orbital topological corner states, we
further show the simulated results of finite square-shaped 2D
SSH photonic structures with 4 × 4 unit cells. The intracell
distance d1 and intercell distance d2 are set as 350 nm and
250 nm, which correspond to |tπ1/tσ1| = 0.81 and |tπ2/tσ2| =
0.91, respectively. Figure 4(e) shows the spectrum of
eigenfrequency deviation δ f = f − f0, where f0 = 3155.384
THz, and f denotes the eigenfrequency of the truncated

plasmonic crystal with 4 × 4 unit cells. Due to the existence of
electromagnetic long-range interactions, the eigenfrequency
spectrum is not completely consistent with the tight-binding
model. However, there are obviously eight corner states in the
middle bulk band gap. Accordingly, the electric field distribu-
tions Ez of the eight corner states are presented in Fig. 4(f).
The corner states do exhibit octopole orbital configurations,
which can be categorized into two groups: four even modes
distributed in four corners of the finite structure [shown on the
top panel in Fig. 4(f)] and four odd modes scattered in four
corners of the finite structure [shown at the bottom panel in
Fig. 4(f)]. Thus, eight octopole corner states with four odd and
four even modes have been identified in 2D SSH plasmonic
crystals using the orbital coupling strengths proposed in the
theoretical analysis corresponding to the point of the star
in Fig. 3(b). Interestingly, the octopole corner states emerge
without orbital-hopping symmetry, i.e., |tπ1/tσ1| �= |tπ2/tσ2|.
This feature is different from the p-orbital corner states re-
ported in previous studies with the orbital coupling strengths
marked by the dark open dots in Fig. 3(b) [36,37,39].

V. OCTOPOLE CORNER STATES IN TERAHERTZ SPOOF
PLASMONIC CRYSTALS

Since the higher-order orbital bands generally correspond
to the higher energy levels and metals’ inherent losses in
the optical frequency range [50], it is challenging to exper-
imentally demonstrate the octopole corner states in optical
frequencies. Our current work is to verify the emergence of
octopole orbital corner states. Although metals are usually re-
garded as perfect electric conductors without electromagnetic
losses in the terahertz regime, it can support surface modes
by drilling an array of holes or etching subwavelength slits
in the surface [51,52]. The dispersion properties and spatial
confinements of such spoof surface plasmons are similar to
those of natural surface plasmons at optical frequencies. To
ensure that the verification is unambiguous, the spoof plas-
monic crystal constructed by textured ultrathin metal disks
is employed in the experiment. In fact, a texture ultrathin
metal disk supporting the localized surface plasmons has been
extensively investigated as a low-frequency analogy to the
plasmonic cavity in nano-optics [41,53–55]. Therefore, these
disks are arranged in a spoof plasmonic crystal as an analog of
a real plasmonic crystal to verify the emergence of octopole
orbital corner states.

Here, we implement the 2D SSH lattice on a spoof
plasmonic crystal with textured ultrathin metal disks at the
terahertz regime, which is arranged with N periodically radical
grooves on a glass substrate, as shown in Fig. 5(a). The outer
and inner radii and thickness of the textured disk are R, r,
and h0, respectively. The number of grooves is fixed as N =
24, the inner radius is fixed as r = 0.4R, and the substrate
thickness is chosen as h1 = 0.5 mm [as shown in the inset
of Fig. 5(b)]. Due to a very small thickness (h0 = 50 nm)
compared with the lateral size of the disk, we take the disk
array as a 2D planar structure in the calculation. Since the
wave penetration depth into metal is much smaller than the
wavelength, the metal is treated as a perfect electrical con-
ductor at terahertz frequencies. For such a textured metallic
disk, the calculated scattering crossing section (SCS) spec-
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FIG. 5. (a) Schematics of the spoof plasmonic crystal with a square lattice, where an enlarged unit cell is presented on the right panel. D1

and D2 are the distances between the nearest disks, and a = D1 + D2 is the lattice constant of the spoof plasmonic crystal. (b) The left panel
demonstrates the calculated SCS spectrum of a textured metallic disk placed on a dielectric substrate (schematically shown in the inset). In the
calculation, the outer and inner radii are R = 200 µm and r = 0.4R, respectively. The number of grooves is fixed as N = 24 with the the filling
ratio of 50%. The thickness and the index of refraction of the dielectric substrate are h1 = 0.5 mm and n = 2.04, respectively. The arrows
marked by i, ii, iii, and iv indicate resonant peaks. The right panel shows the field distribution corresponding to each peak. Obviously, octopole
resonance (marked by iv) is around 0.30 THz. (c) Simulated eigenfrequency spectrum of finite spoof plasmonic crystals with 4 × 4 unit cells,
and D1 = 445 µm and D2 = 415 µm. The red open dots represent the corner states. (d) I–VIII show the electric fields Ez of the eight octopole
orbital corner states in the finite spoof plasmonic crystals with 4 × 4 unit cells. d1–d8 present the intensity (red open dots) around each disk
as a function of its position d along the diagonal (antidiagonal) lines, with the starting point located at the center of the first disk (marked by
dashed box) and ending at the center of the fourth disk, respectively. The black dashed lines are fittings. The insets in d1–d8 show the corner
states inside of the black dashed boxes in I–VIII.

trum is illustrated in Fig. 5(b), which consists of multiple
well-separated resonance peaks corresponding to the dipole,
quadrupole, hexapole, and octopole modes from low to high
frequencies. The octopole resonates around 0.30 THz, and
the quality factor of the octopole mode is larger than that
of the dipole, quadrupole, and hexapole modes. This feature
indicates the advantage of utilizing the octopole mode for
plasmonic sensing and trapping. We arrange the disks in a

square lattice with the unit cell shown as the inset of Fig. 5(a).
The separations between disks are D1 = 445 µm and D2 =
415 µm, respectively. The unit cell is compactly placed peri-
odically with spatial period a = D1 + D2. Figure 5(c) shows
the simulated eigenfrequency spectrum of finite spoof plas-
monic crystals with 4 × 4 unit cells. There are eight octopole
corner states around 0.30 THz marked by the red open dots,
which are interspersed among the bulk states marked by blue
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FIG. 6. (a) The photograph of the fabricated sample. The scale
bar is 200 µm. (b) Experimental setup to perform transmittance
measurements. (c) Measured time-domain spectra when the terahertz
waves transmit vertically through the sample; the reference spectrum
is that of a bare glass substrate. (d) Measured transmission spectrum
of the sample.

open dots. The simulated electric field distributions of these
eight octopole corner states [as shown in Fig. 5(d)] indicate

four even and four odd modes, which distinctly manifest
unique features of orbital patterns [see the insets in d1–d8 of
Fig. 5(d)]. Additionally, due to the limited size of the simu-
lated model, some nonzero electric field distributions appear
inside the 4 × 4 unit cells, as shown in I–VIII of Fig. 5(d). Yet
the corner states are exponentially localized at the corners.
To illustrate the localization of the orbital corner states, we
analyze the intensity |Ez|2 around each disk along diagonal (or
antidiagonal) lines starting from the center of the disks marked
by dashed boxes in I–VIII of Fig. 5(d) and extending for
4 disks, respectively. Here, the intensity around each disk is
obtained by integrating |Ez|2 within an area of 430 × 430 µm2

covering the disk. The integrated intensity around each disk
is plotted in d1–d8 of Fig. 5(d) with red open dots, and the
fittings are shown as the black dashed lines. The exponential
decay of the intensity suggests the spatial localization of the
corner states in the system.

Experimentally, the spoof plasmonic crystals of textured
metallic disk arrays are fabricated based on the above de-
sign. The process of experimental fabrication is as follows.
First, the structure of textured metallic disks is fabricated with
maskless photolithography and lift-off technology. Specifi-
cally, a layer of positive photoresist film (S183) (2 µm in
thickness) is spin-coated on a 0.5 mm thick glass substrate.
Then, the ultraviolet lithography is applied to generate the
inverse pattern of the disks. After development, an array of
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FIG. 7. (a) Experimental setup of an optical path for detecting the corner states. (b) Illustrations of spoof plasmonic crystals. The electric
component of the incident wave is along the y axis, and the wave vector is along the x axis. (c) Simulated intensity distribution of the electric
field under the excitation at 0.29 THz across the 5 × 5 unit cells. Here, the probe is located 20 µm above the sample. (d) The measured spatial
distribution of electric field intensity corresponding to different regions in (b), where the yellow boxes indicate the partial sample, and the red
dashed boxes highlight the position of the corner disk. (e) The images from left to right show the intensity (red open dots) around each disk
as a function of its position d along the diagonal lines starting from corners C1, C2, C3, and C4 in regions I, II, III, and IV, respectively. The
black dashed lines are the fittings of the intensity data.
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inverted patterns is formed in the photoresist layer. A 50 nm
thick gold layer is then deposited on the whole sample by
electron beam evaporation. Thereafter, with chemical lift-
off technology, those regions covered with the photoresist
layer are removed, and the gold patterns in contact with the
glass substrate survive. The fabricated sample size is 9.46 ×
9.46 mm, containing 11 × 11 unit cells. The top-view optical
micrograph of the partial sample is shown in Fig. 6(a).

The optical measurements are carried out by a tera-
hertz time-domain spectrometer (THz-TDS, EKSPLA/THz,
Lithuania), as schematically illustrated in Fig. 6(b). Photocon-
ductive antennas are used as terahertz emitters and detectors.
Excited by a femtosecond laser pulse, the antenna emits a
linearly polarized terahertz beam along the y direction. We
make the terahertz waves incident vertically on the sample
surface, and the transmitted signals are collected by the de-
tector. We first consider the time-domain signal of the bare
glass substrate as the reference and then place the sample into
the THz-TDS to obtain signal E(t), as shown in Fig. 6(c).
After the Fourier transform, the transmission spectrum of the
sample is retrieved, as shown in Fig. 6(d). There is a dip within
0.29–0.31 THz, indicating a resonance mode in this frequency
range. The resonant frequency of this mode is consistent with
the calculated eigenfrequency of octopole corner states in
Fig. 5(c).

Then, we set up an optical system to detect the corner
states, as illustrated in Fig. 7(a). We achieve a glancing in-
cidence of terahertz waves onto the sample surface from the
side by utilizing mirrors. As indicated in Fig. 7(b), the sample
is placed in the x-y plane with two diagonal lines along the x
and y directions, respectively. While the y-polarized terahertz
wave is incident on the sample in the x axis, a 0.2-mm-width
probing antenna is placed vertically in front of the sample
surface to capture the radiation signals [shown in Fig. 7(a)]. To
demonstrate the existence of octopole corner states, the elec-
tric field intensities |Ez|2 on the sample have been simulated
in advance. The simulated near-field response with a probe
20 µm above the sample is shown in Fig. 7(c). It is distinctly
evident that the octopole corner states are excited at three
corners of the finite structure at 0.29 THz. Experimentally,
the time-domain signals of different portions of the sample
can be detected, and the spatial mapping of the electric field
intensity of the sample is achieved via the Fourier transform.
We conduct measurements on four corner regions I, II, III,
and IV of the sample [as shown in Fig. 7(b)]. Each region has
the size of 3 × 3 unit cells (with a side length of 2.58 mm).
In Fig. 7(d), the measured patterns of regions I, II, and III
are demonstrated at the frequency of 0.29 THz. Indeed, there
are three localized bright spots distributed at three corners
of the sample, respectively, which are consistent with the
simulation in Fig. 7(c). In order to get the corner state in region
IV, we rotate the sample counterclockwise by 90 degrees in
the x-y plane with an incidence in the x axis. Meanwhile,
the measured pattern of region IV is present in Fig. 7(d),
where a bright spot at the corner can be identified. Therefore,
the octopole corner states are experimentally observed at four
corners marked by red dashed boxes C1, C2, C3, and C4
in Fig. 7(d), respectively, in the truncated square-shaped 2D
SSH spoof plasmonic crystal. To quantify the localization
of the corner states, we analyze the intensity |Ez|2 around

each disk along diagonal lines starting from corners of C1,
C2, C3, and C4 in regions I, II, III, and IV, respectively.
Here, the intensity around each disk is obtained by taking the
average of |Ez|2 within an area of 430 × 430 µm2 covering
the disk. The intensity as a function of the disk position d
is demonstrated in Fig. 7(e) from left to right with red open
dots, corresponding to regions I–IV of Fig. 7(d), respectively.
The fittings are demonstrated by the black lines in Fig. 7(e),
which demonstrate exponential decay and suggest the occur-
rence of the exponentially localized corner states. It is noted
that the field confinement in region I is better than the other
cases, which might come from the imperfection in fabricating
the disks.

There are some inherent technical limitations and
restrictions in our measurements in probe size and imaging
resolution, which make it difficult to achieve the details
of the profile of the octopole corner states. To identify
the orbital configuration of these corner states, near-field
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FIG. 8. (a) Part of the fabricated sample with a defect near the
corner C1 in region I, where the disk enclosed by white dashed
box is deformed. The scale bar is 400 µm. (b) Simulated intensity
distribution map corresponding to region I where the defect is in-
troduced near the corner C1. The simulation is excited at 0.29 THz,
and the probe is located 20 µm above the sample. (c) The intensity
(red open dots) at each disk as a function of its position d along
diagonal line starting from the corner C1 in (b). (d) The measured
spatial distribution of the electric field intensity in region I with
a defect located near the corner C1. The yellow box indicates the
partial sample. (e) The intensity (red open dots) at each disk as a
function of its position d along the diagonal line starting from the
corner C1 in (d). The black dashed lines in (c) and (e) are the fittings
of intensity data.
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scanning terahertz spectroscopy is required according to our
calculated electric field distributions. The spatial resolution
of the near-field scanning terahertz spectroscopy should
possesses a resolution better than 30 µm. The near-field
detection should be able to detect the phase distribution.
Also the terahertz wave should be obliquely incident on
the surface of the sample. The near-field scanning terahertz
spectroscopy based on a photoconductive microprobe [56]
may be able to provide detailed near-field information of the
octopole corner states, which is beyond our current detection
capability.

Despite the limitation in detecting the near-field intensity
distribution, we are able to investigate the robustness of the
corner states. We introduce a defect near the corner C1 in
region I, and fabricate the sample as shown in Fig. 8(a), where
the disk marked by the white dashed box is deformed. We
simulate the scenario where the terahertz waves illuminate
the sample at 0.29 THz, and plot the near-field response, as
shown in Fig. 8(b). The simulation shows that the octopole
corner states still exist locally at the corner C1 of the structure,
despite the existence of a defect near that corner, and the C4v

symmetry has been broken in the sample. Further, we measure
the spatial electric field distribution of region I, as shown
in Fig. 8(d). It turns out that there still exists a local bright
spot at the corner C1 of the sample, which is consistent with
the simulation [Fig. 8(b)]. With the same approach, we also
analyze the intensity |Ez|2 on each disk along the diagonal line
starting from corner C1 of Figs. 8(b) and 8(d), respectively.
The intensity as a function of the disk position d is demon-
strated in Figs. 8(c) and 8(e) with red open dots, while the
black dashed lines are the fitting results. The fitting confirms
the exponential decay envelope, which is a hallmark feature
of the corner states. Therefore, we conclude that the octopole
corner states do exist even in the presence of defects near
that corner.

VI. CONCLUSION

In summary, we theoretically demonstrate higher orbital
HOTIs in the C4 symmetric square lattice and experimentally
observe the existence of octopole topological corner states in
spoof plasmonic crystals. With the tight-binding model, we
derive the higher orbital Hamiltonian by introducing a pair
of orthogonal orbitals into the lattice. Based on the expanded
square lattice, we investigate the higher energy band and iden-
tify the orbital corner states. These orbital corner states are
characterized by the generalized winding number due to the
C4 symmetry of the system. Apart from tight-binding model
calculations, the topological corner states of orbital-like oc-
topole modes are also numerically simulated in the photonic
system using a Drude metal with air holes. The eigenenergy
spectrum and related field distributions confirm the octopole
orbital characterizations of corner states, which are quite
different from previous s-orbital corner states. Further, we
design spoof plasmonic crystals at the terahertz frequency
regime. We confirm the existence of octopole corner states at
the terahertz frequency via eigenspectra and field distribution
simulations. Experimentally, we identify the octopole corner
states from the spatial mapping of the electric field intensity
by utilizing terahertz time-domain spectra. We expect our re-
sults to promote the studies of the exotic higher orbital bands
and higher-order topological physics.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D
Program of China (Grants No. 2022YFA1404303 and No.
2020YFA0211300), the National Natural Science Foundation
of China (Grant No. 12234010), and the Natural Science
Foundation of Jiangsu Province (Grant No. BK20233001).

[1] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić,
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