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Abstract: We introduce a programmable flip-metasurface

that can dynamically control the reflection while leaving

the transmitted wavefront undistorted in an ultra-broad

spectrum, i.e., the same as that of the incidence. This meta-

surface is constructed by unique meta-atoms that can be

dynamically switched between two flip states, which cor-

respond to the spatial inversion of each other. Due to the

reciprocity principle and spatial inversion symmetry, the

transmission is independent of the flip states, regardless

of the frequency. While the reflection can be conveniently

controlled by tuning the flip states. Dynamical steering

of the reflected waves, such as diffuse reflection, focus-

ing, and beam-splitting, is numerically and experimentally

validated along with unaffected transmission. Our finding

opens an approach to dynamically modulate reflections
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without affecting transmission, which could have broad

potential applications ranging from wireless communica-

tions to stealth technology.
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1 Introduction

Metasurfaces [1]–[4] consist of an array of planar meta-

atoms with spatially varying structures and, hence, dis-

tinct responses when interacting with the incident elec-

tromagnetic waves. Waves scattered from the metasurface

can then be flexibly manipulated as needed by precisely

arranging the meta-atoms to impose desired distributions

of phase, amplitude, and polarization on the incidence. Up

to now, plenty of novel mechanisms in metasurfaces have

been revealed, including generalized reflection/refraction

law [5], [6], propagating-to-evanescent wave conversion

[7]–[9], high-efficiency Huygens’ metasurfaces [10], [11],

polarization conversion [12]–[14], Pancharatnam–Berry-

phase metasurfaces [15], [16], reciprocity-protected meta-

surfaces [17]–[20], and so on. These findings further inspire

novel phenomena and devices based on metasurfaces,

such as achromatic metalenses [21]–[24], orbital-angular-

momentum beam generation [25], [26], high-efficiency and

high-capacity holograms [27]–[30], and ultrathin invisibility

cloaks [31]–[35], etc. By introducing tuning mechanisms,

including optical, magnetic, thermal, and electric tunings in

metasurfaces, the response of each single meta-atom and

then the functionality of the whole metasurface become

dynamically tunable [36]–[44].

Based on tunable metasurfaces, the notion of pro-

grammable coding metasurfaces (PCM) was introduced as

a digital counterpart to traditional metasurfaces, aiming to

exert precise control over electromagnetic (EM) waves [45].

Most typical PCMs operate in either reflection or transmis-

sion modes [45]–[48]. One of the most crucial requirements
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on PCM designs for wireless communication applications

is full-space wave steering, i.e., simultaneously manipulat-

ing the reflection and transmission waves. One standard

method to realize full-space PCMs is to restrict distinct

incident waves with different frequencies, polarizations, or

incident angles separately to the reflection and transmission

half spaces [49]–[51]. However, this method relies on two

distinguished channels, hindering its practical applications.

Recently, a study has demonstrated that it is possible to

achieve simultaneously independent control over transmis-

sion and reflection within a shared polarization and fre-

quency channel [52]. But, the bandwidth is limited, and

the spatial sampling of the phase shift pattern has a lower

density compared to conventional metasurfaces.

In this study, we demonstrate a programmable flip-

metasurface (PFM) that is capable of dynamically manip-

ulating reflection while keeping the transmitted wavefront

the sameas that of the incidence in anultra-broad spectrum,

as schematically shown in Figure 1. The PFM is composed

of an array of meta-atoms with two-metal-layer structure

and a positive-intrinsic-negative (PIN) diode on each layer

as shown in inset of Figure 1. Each meta-atom supports two

different states, where the PIN on either the top layer or

the bottom layer is on. Analogous to the two spin states

of electrons, such two states of meta-atoms are denoted

as “up” state and “down” state. The switch between these

two states is equivalent to physically flipping the meta-

atom, i.e., applying spatial inversion to it. Such a switch can

be realized by controlling the on/off states of PIN diodes

in the meta-atoms. According to the mechanism of flip-

metasurface [17], [19], [53], such two states of a meta-atom

have the same transmission phase but distinct reflection

phases. Therefore, real-time control of the reflection wave-

front can be realized through modulation of the states of

each meta-atom by employing a field-programmable-gate-

array (FPGA)-based system to control the PINdiodes therein.

Meanwhile, the wavefront in the transmission is unaffected

nomatter what the arrangement of the states ofmeta-atoms

is. To verify the performance of the PFMs, we present a

dynamic switchover betweenmulti-functionalities of reflec-

tion, including the focusing, beam splitting, and diffuse

reflection, and simultaneously unchanged transmission.

Both numerical simulation and microwave measurement

have validated the functionality of the PFMs. Our work

paves the road towards dynamic andhigh-spatial-resolution

manipulations of reflection without affecting transmission,

which may yield many inspiring applications in fields like

wireless communications and stealth technologies.

2 Results

As a practical example of PFM, we design a component

meta-atom constructed by two identical layers containing a

PIN diode (Skyworks SMP1320-079LF) connecting two metal

patches, as illustrated in Figure 2(a) and (b). The two lay-

ers are separated by a dielectric spacer with a dielectric

constant of 4.38 and a loss tangent of 0.004. The bias net-

work located between the two layers is not shown here.

A diagonal pair of passive patches, i.e., the left patch on

the top layer and the right patch on the bottom layers, are

wired to the ground square frame. Another diagonal pair

of active patches, i.e., the right patch on the top layer and

Figure 1: Conceptual illustration of the programmable flip-metasurface. The reconfigurable multi-functionality (F1 –F3) of reflection and undistorted

transmission wavefront are simultaneously achieved through controlling the up and down states of meta-atoms of the programmable

flip-metasurface.
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Figure 2: Meta-atom designed for a PFM. (a, b) Perspective view (a), lateral view, top view, and bottom view (b) of the meta-atom with geometric

parameters of p= 20 mm, l1 = 8.25 mm, l2 = 18 mm, g= 4.6 mm, q= 4.6 mm,m= 1.4 mm, n= 2.2 mm, h1 = 1.5 mm. (c) The calculated transmission

amplitudes and phases of the two states of the meta-atom. (d) The calculated reflection amplitudes and phases of the two states of the meta-atom.

The upward triangle symbols represent the “0” state mete-atom, and the downward triangle symbols represent the “1” state meta-atom.

the left patch on the bottom layers, is connected through

metallic holes. The geometric parameters of the meta-atom

are specified in the figure caption of Figure 2. The passive

patches are connected to a reference voltage of 1.8 V. The

active patches are connected to either a high bias voltage of

0 V or a low bias voltage of 3.3 V through the middle biasing

lines (not shown here), resulting in two different states, i.e.,

“top diode on and bottom diode off” and “top diode off and

bottom diode on,” which correspond to the “up” state and

“down” state respectively. The equivalent circuits of a PIN

diode can be considered as an RLC series connection with

parameters L = 0.5 nH, C = 0.24 pF when the PIN diode is

in the off states, whereas with parameters R = 0.5Ω, L =
0.7 nH when the PIN diode in the on states.

Simulations are carried out by using the finite-element

method. The simulated transmission and reflection coef-

ficients of both the “up” state and “down” state of the

meta-atom under the normally incident x-polarized inci-

dent wave are shown in Figure 2(c) and (d), respectively,

where the upward triangle symbols depict the “up” state

mete-atom and the downward triangle symbols depict the

“down” state meta-atom. From Figure 2(c), it is seen that

the transmission amplitude and phase of the meta-atom

between the “up” and “down” states are the same. In con-

trast, Figure 2(d) illustrates that the two states have dis-

tinct reflection phases and almost identical reflection ampli-

tudes. The reflection phase difference reaches the maxi-

mum value of 180◦ at 5.836 GHz. From the perspective of

codingmetasurface, meta-atoms supporting such two states

with 180◦ phase difference are typical 1 bit coding elements.

Therefore, the “up” and “down” states are also referred to

as “0” and “1” states in the following.

We then design a PFM consisting of 16 × 16 meta-

atoms with a total size of 320 mm × 320 mm. Such a PFM

is fabricated by the commercial standard printed circuit

board (PCB) technology. The fabricated PFM is shown in

Figure 3(a). As the first illustrative example, the Fresnel

wave zone plate coding pattern is designed for the focusing

functionality (F1) when an x-polarized incident Gaussian

wave propagates along the−z direction. In a circular binary
phase Fresnel zone plate, the boundaries of each zone can

be expressed as:

r
m
=

√
m f

d
𝜆+ (m𝜆∕2)2, m = 1, 2, 3 ⋅ ⋅⋅ (1)

where f
d
is the focal length and 𝜆 is the wavelength of the

working frequency in free space. According to equation (1),
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Figure 3: The focusing functionality (F1) in the reflection and simultaneously undistorted transmission wavefront enabled by a PFM. (a) Photograph of

the fabricated metasurface. (b) Designed state pattern of the PFM under an x-polarized incident Gaussian wave propagating along the−z direction at
5.836 GHz. (c) The simulated Ex component of the scattered field distributions on the x − z plane (left panel). The simulated field-intensity

enhancement in the reflection space (right panel). (d) Experiment setup for near-field scanning. (e) The measured Ex component of the scattered fields

of the PFM at 5.5 GHz (left panel). The measured field-intensity distribution (
|||⃖⃖⃗Ex

|||
2

) of the reflected fields in reflection at 5.5 GHz (right panel). Due to the

considerable thickness of the absorber around the PFM, some areas near the PFM can’t be measured.

wehave designed a circular binary phase Fresnel zone plate

to focus the incident wave with a focal length f
d
of 60 mm at

5.836 GHz, the corresponding phase coding pattern is shown

in Figure 3(b). We first employ full wave simulations to vali-

date the functionality of this PFM. The simulated E
x
compo-

nent of the scattered field distributions on the x − z plane at

5.836 GHz is shown in the left panel in Figure 3(c), indicating

the focusing effect in the reflection space and that the trans-

mitted wave possesses a flat wavefront and its propagation

direction is the same as that of the incident Gaussian beam.

We note that in principle such an undistorted transmission

wavefront applies to frequencies ranging from DC to fre-

quency where the diffraction effect starts to occur. Because

the identical transmission amplitudes and phases of the

meta-atomsworking in up and down states are protected by

reciprocity and are frequency-independent. However, for a

practical metasurface, on the one hand, at low frequencies

where the wavelength is much larger than the size of meta-

atoms, the reflected and transmitted properties of the meta-

atom can be barely tailored by engineering its geometric

parameters. Therefore, here we consider a finite frequency

range of 4–8 GHz. The simulated transmitted wave of the

PFMs at frequencies of 4 GHz, 6 GHz, and 8 GHz are sepa-

rately shown in the Supplementary Materials, where it is

found that the wavefronts of transmitted waves through

PFM maintain the planar wavefront of incidence, demon-

strating the ultra-broadband property of the undistorted

transmission. We then calculate the field-intensity enhance-

ment in the x − z plane at 5.836 GHz. The enhancement

is 10.85 times at the focal point, and the focal length is

68.85 mm, as can be found from the simulatedfield-intensity

distribution of the reflection shown in the right panel in

Figure 3(c). The field enhancement at the focal point is

considerable in the frequencies ranging from 5.4 GHz (6.21

times) to 6.1 GHz (5.22 times). Specifically, at 5.7 GHz, this

enhancement reaches a remarkable factor of 11.30, which

indicates that the PFM has a notable focusing effect with a

bandwidth of around 0.7 GHz.

The near-field scanning experimental setup within a

microwave anechoic chamber is depicted in Figure 3(d). To

generate a quasi-plane-wave incidence, an emitting horn

antenna was employed. A probing antenna was used for

electric field scanning on the horizontal plane (x − z plane).

These two antennas were connected to two ports of a

network analyzer (KEYSIGHT N5224B) to obtain both the

magnitude and phase of the electric field at the posi-

tion of the probing antenna. The measured E
x
component

of the scattered fields of the PFM, exhibiting the focus-

ing functionality (F1) at 5.5 GHz, is depicted in Figure 3(e).

The top and bottom panels display the reflected and
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transmitted fields, respectively. Additionally, the measured

field-intensity distribution (
||| ⃖⃖⃗Ex

|||
2
) of the reflected fields at

5.5 GHz is plotted in the right panel of Figure 3(e). The

measured results in Figure 3(e) reveal a clear focal spot

with high field intensity near the focal point and a nearly

plane-wave transmission wavefront. The measured results

closely align with the simulation outcomes, affirming the

capabilities of the PFM to achieve both focusing effects in

reflection and an undistorted transmission wavefront. The

frequency discrepancy betweenmeasurements and simula-

tions should be attributed to several reasons. Firstly, in the

sample fabrication, additional metal wires and irregularly

shaped solder joints are introduced on the outer sides of the

diode’s pins to attain a good connection, both of which are

not considered in simulations, where ideal metal wires are

used to connect the diode. Secondly, in the experiments, the

incident wave generated by a horn antenna has a convex

wavefront. While the simulations employed a perfect Gaus-

sian beam with a specific beam waist and focus distance.

Thirdly, in simulations, wemodel the PIN diode as an equiv-

alent RLC series circuit, which is different from the true

response of a practical PIN diode in the fabricated sample.

As the second illustrative example, we tune this PFM

to possess a random state distribution so that it can gen-

erate diffuse reflection (F2) and an undistorted transmis-

sion wavefront. A supercell of square 2 × 2 “0” state meta-

atoms or “1” state meta-atoms is utilized as the metasurface

block and referred to as the 1 bit coding block. The PFM

is composed of 8 × 8 coding blocks. The desired random

pattern configuration of the “0” state coding blocks and “1”

state coding blocks can be optimized by using the artifi-

cial bee colony algorithm. The optimized random pattern

is shown in Figure 4(a). The scattered field distributions

of the designed PFM are simulated under the illumina-

tion of an x-polarized incident Gaussian wave propagating

along the −z direction. Figure 4(b) shows the simulated E
x

component of the scattered field distributions on the

x − z plane at 5.7 GHz. It is seen that the transmitted

Figure 4: The diffuse reflection functionality (F2) and simultaneously undistorted transmission wavefront enabled by a PFM. (a) Designed state pattern

of the PFM under an x-polarized incident Gaussian wave propagating along the−z direction at 5.836 GHz. (b) The simulated Ex component of the
scattered field distribution on the x − z plane. (c) The measured Ex component of the scattered fields of the PFM at 5.4 GHz. (d) The simulated 2D

far-field radiation patterns of the PFM (solid lines) and the reference pure “0” state metasurface (dashed lines). (e) The simulated 3D far-field radiation

patterns of the PFM (left panel) and the reference pure “0” state metasurface (right panel).
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wave maintains the plane wavefront, while the wave-

front of the reflected wave is unordered. The simulated

transmitted wave of the PFMs at frequencies of 4 GHz,

6 GHz, and 8 GHz are separately shown in the Supple-

mentary Materials, exhibiting ultra-broadband undistorted

transmissions. From the measured scattered electric fields

shown in Figure 4(c), we can also observe a diffuse reflec-

tion and a quasi-plane-wave transmission at 5.4 GHz. To

quantitatively study the diffusing ability of the PFM, we

also simulated the far-field radiation patterns of the PFM.

For comparison, a PFM with only “0” state meta-atoms is

also investigated. As illustrated in Figure 4(d) and (e), the

2D and 3D radiation patterns of the PFM at 5.7 GHz exhibit

the optimal suppression of the specular reflection, which

exceeds 12.86 dB, when compared to the reference pure “0”

state metasurface. The deviation between 5.7 GHz and the

frequency where the reflection phase difference is largest,

i.e., 5.836 GHz, should be attributed to that both the differ-

ences in reflection phase and amplitude affect the diffusion

performance of the PFM. However, the transmission lobes

in both the random PFM and pure “0” state metasurface

are nearly identical in both directions and intensities. Com-

pared to the reference metasurface, the suppression of the

specular reflection is more than 10 dB within the frequency

range from 5.5 GHz to 5.75 GHz, indicating a bandwidth

of around 0.25 GHz. The simulated and measured results

verify the capabilities of the PFM to achieve both diffuse

reflection and an undistorted transmission wavefront.

As the last example, the reflected functionality of the

PFM is set as beam splitting (F3). The grating-like state pat-

tern of the PFM is illustrated in Figure 5(a). In this case,

a zero-order and two first-order diffracted beams in the

reflection are allowed. The deflection angle for these two

first-order diffracted beams can be theoretically predicted

using the grating theory, which can be expressed as follows:

𝜃
m
= sin−1(m𝜆∕T), (2)

where T is the period of the coding pattern, and m is the

order of diffraction. Under the x-polarized incident Gaus-

sian wave propagating along the −z direction at 5.836 GHz,
the PFM will deflect the normally incident wave to direc-

tions with angles of 0◦ and ±25.3◦ in the x − z plane

Figure 5: The beam splitting functionality (F3) in the reflection and simultaneously undistorted transmission wavefront enabled by a PFM.

(a) Designed state pattern of the PFM under x-polarized incident Gaussian wave propagating along the−z direction at 5.836 GHz.
(b) The simulated Ex component of the scattered field distribution on the x − z plane. (c) The simulated 2D far-field radiation patterns at 5.836 GHz.

(d) The measured Ex component of the scattered fields of the PFM at 5.5 GHz.
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according to Equation (2). The simulated E
x
component

of the scattered field distributions on the x − z plane at

5.836 GHz is shown in Figure 5(b). The corresponding 2D

far-field radiation pattern is presented in Figure 5(c). These

simulation results reveal that the reflected wave is split

into three beams with deflection angles of 𝜃 = 0◦ and

𝜃 = ±25◦, respectively, and that the transmitted wave keeps
the planar wave front of the incidence. The simulated

transmitted wave of the PFMs at frequencies of 4 GHz,

6 GHz, and 8 GHz are separately shown in the Supple-

mentary Materials, exhibiting ultra-broadband undistorted

transmissions. These results align well with the theoreti-

cal predictions. We note that for phase-type grating com-

posed of elements possessing strictly out-of-phase reflection

with identical amplitude, all even diffraction orders should

vanish [54]. The origin of the zero-order reflection of the

PFM here should be attributed to the distinct reflection

amplitude of the two states stemming from the effect of

the bias network, which breaks the identity between meta-

atoms. The measured E
x
component of the scattered fields

of the PFM, demonstrating the beam splitting functional-

ity (F3) at 5.5 GHz, is illustrated in Figure 5(d). The mea-

sured results align well with the simulation results, vali-

dating the capabilities of the PFM to achieve both beam

splitting in the reflection and an undistorted transmission

wavefront.

3 Discussion and conclusion

The proposed PFM can be easily extended to full-space PCMs

[52], [55]–[59] by stacking a transmission-type PCM [47] on

the back of the PFM, which has been intensively studied.

In this configuration, the reflection is manipulated directly

by the PFM, and the undistorted transmission through the

PFM is further tailored by the PCM to the desiredwavefront.

Compared to previous full-space PCM, the whole region of

the metasurface contributed to forming both the reflection

and transmission wavefront.

It is worth noting that the manipulated reflections

are usually valid in a limited band due to the dispersive

reflection phase difference between the two states. Several

common mechanisms might be introduced to broaden the

operating frequency range in reflection, such as dispersion

compensation [60] and interference effect [53].

The proposed PFM can manipulate the reflection in

real-time without affecting the transmission with the same

polarization, which is beyond most of the previous full-

space metasurfaces limited to tailoring two orthogonal

polarization channels. A polarization-independent PFM can

be compatible with a broader range of application scenar-

ios. One of the most traditional methods to extend the cur-

rent PFM design to the polarization-independent configu-

ration is to adopt C4v symmetric metallic structures in the

meta-atom design [19], [61]. In this circumstance, eachmeta-

atom contains more PIN diodes. Therefore, the complexity

of the bias network might be significantly increased. Opti-

mizing the topology and geometry of the meta-atoms might

help to release some requirements on the bias network.

In summary, we have proposed and experimentally

verified a novel PFM that can dynamically manipulate the

reflection while maintaining the transmission wavefront

undistorted. The PFM consists of an array of meta-atoms

constructed by two identical metal layers with a control-

lable PIN diode. Such ameta-atom can be switched between

two states, which are flip counterparts to each other, by an

FPGA control system. The reciprocity principle and space-

inversion operation guarantee the unaffected transmission

when the phase coding pattern of the metasurface in reflec-

tion is changed. Both the simulation and measured results

have affirmed the outstanding performance of the PFM.

The demonstrated PFM provides a flexible platform in mul-

tifunctional and full-space electromagnetic manipulations,

which could achieve practical applications in the field of

wireless communication and scatteringmanipulation, espe-

cially in cases where transmission wavefront is required to

be undistorted, such as radomes.
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