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Perfect transmission and self-similar optical transmission spectra in symmetric
Fibonacci-class multilayers
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We study the transmission properties of light through the symmetric Fibonacci-class@SFC(n)# quasiperiodic
dielectric multilayers, which possess a mirror symmetry. For a normal incidence of light, many perfect trans-
mission peaks~the transmission coefficients are unity! are numerically obtained. The transmission coefficient
exhibits a two-cycle feature in a family of the SFC(n) with an oddn, while a three-cycle feature in another
family with an evenn. The scaling factorsf (n), which give a description of the self-similar behaviors of
transmission spectra, are analytical obtained. Letmi j

(n)(k) ( i , j 51,2) be the elements of the total transfer matrix
of thekth generation of SFC(n); it is proven that the positions~wavelength! of the perfect transmission peaks
can be uniquely determined bym12

(n)(k)1m21
(n)(k)50. The analytical results are very well confirmed by the

numerical calculations.

DOI: 10.1103/PhysRevB.63.245104 PACS number~s!: 42.25.Bs, 42.70.Qs, 61.44.Br
h
r
ic
e

pe

ua
ax
en
l
m

s

n
d
y
n
e
a
e
-
r

liz
en
f
er

a
n
fa

in

o

onic
ym-
,

bi-
r-
cal

er-
sys-
of
er-

ed.
s-

lti-

s-
ral
lar,
on
sons
ula-

ce
cal
cle
are
al-
c.

ts
-

rs

ym-
I. INTRODUCTION

The experimental discovery of quasicrystals by Shec
manet al.1 has led to intense investigations of the structu
and physical properties of deterministic aperiod
systems.2–15 In the early days, the dominating part of th
theoretical work had been focused on the electronic pro
ties of the Fibonacci sequence.2–5 In 1985, Merlin et al.16

reported the fabrication of semiconducting and metallic q
siperiodic superlattices using the molecular-beam-epit
~MBE! technique. Afterwards, several interesting experim
tal studies have been reported.17–19 These experimenta
works exhibit unusual properties that are very different fro
those of periodic and disordered systems.

Recently, there has been significant interest in studie
the localization of electromagnetic waves~EW! in photonic
band-gap~PBG! materials.20–24 This interest is partly due to
the fact that the interactions between the electrons are
existent any more and the experiments can be performe
the room temperature. Furthermore, the unusual propert
the control of the propagation of light in the PBG has pote
tial applications in many optical devices. At the same tim
studies on the PBG have been extended to photonic qu
periodic structures, and some interesting results have b
reported.17,18,25–34The photonic Fibonacci lattice was pro
posed by Kohmotoet al.26 They predicted a fractal behavio
of the transmission spectrum. Later, the experimental rea
tion of optical Fibonacci dielectric multilayers has be
reported.18 In our opinion, the rich multifractal structures o
transmission spectra of the quasiperiodic optical multilay
may provide a possible application of these systems
narrow-band filters. However, we have noted that the tra
mission coefficients of the mentioned works above are
below unity and it is still difficult to apply these results
real optical systems. On the other hand, Dunlapet al.35 re-
ported the delocalization-localization transition in the s
called one-dimensional~1D! random-dimer model~RDM!.
0163-1829/2001/63~24!/245104~9!/$20.00 63 2451
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The basic reason for the appearance of extended electr
states in the RDM has been traced to the existence of s
metric internal structure.36 Motivated by these investigations
recently we introduced the internal symmetric into a 1D
nary Fibonacci dielectric multilayer. Surprisingly, many pe
fect transmission peaks are definitely found in the opti
transmission spectra of the study system.37 In the paper,37

though, there is strong numerical evidence that optical p
fect transmission phenomenon can be observed in the
tem, yet no satisfactory explanation of the physical nature
the results is provided and that a rigorous quantitative und
standing of this phenomenon is still a problem to be solv
In this present paper, we will study in detail the optical tran
mission properties of light through the quasiperiodic mu
layers that are arranged in the Fibonacci-class@FC(n)#
sequences38 along two opposite directions and that also po
sess a mirror symmetry. We will try to explain the gene
mechanism behind the numerical conclusions. In particu
we will show analytically where the perfect transmissi
peaks can be found in a given system and make compari
between the theoretical results and the numerical calc
tions.

We organize this paper as follows. In Sec. II we introdu
the models we are studying. In Sec. III we study the opti
transmission properties of the studied models. Two-cy
and three-cycle behavior of transmission coefficients
theoretically predicted and numerically confirmed. The sc
ing factorsf (n) are also analytically obtained. Then, in Se
IV, we theoretically predict the positions (l0/2l, herel0 is
the central wavelength! where the transmission coefficien
are unity and perform numerical simulations. A brief sum
mary is given in Sec. V.

II. MODEL

Let us consider a multilayer in which two types of laye
A and B are arranged in a binary Fibonacci-class@FC(n)#
sequence. Then, we can construct two kinds of binary s
©2001 The American Physical Society04-1
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metric Fibonacci-class@SFC(n)# sequences. For thej th gen-
eration of the SFC(n), these two symmetric sequences c
be expressed asSj

(n)5$Gj
(n) ,H j

(n)% and Pj
(n)5$H j

(n) ,Gj
(n)%,

where Gj
(n) and H j

(n) are Fibonacci-class sequences; th
obey the recursion relations

Gj
(n)5@Gj 21

(n) #nGj 22
(n) , ~1!

H j
(n)5H j 22

(n) @H j 21
(n) #n, ~2!

Sj
(n)5@Gj 21

(n) #nGj 22
(n) H j 22

(n) @H j 21
(n) #n, ~3!

with G0
(n)5B,G1

(n)5Bn21A, and H0
(n)5B,H1

(n)5ABn21. If
we setn51, the substitution rule~1! turns back to the Fi-
bonacci case, and ifn52, it is exactly the intergrowth
sequence.29

In this paper we will restrict ourselves to the case ofSj
(n) .

As an example, the fourth sequence ofS4
(1) is

S4
(1)5$BAABAABAAB%. ~4!

The corresponding structure of~4! is shown in Fig. 1. As
can be seen from this figure, the sequence has a mirror s
metry. For studying the transmission coefficient, we use
formalism presented in Ref. 26. For the SFC(n) with two
different kinds of layersA and B, we denote the index o
refraction bynA andnB and thickness bydA anddB , respec-
tively. The incident monochromatic electromagnetic wave
supposed to be normal to the layer surfaces. For simplic
the thickness of layers are chosen asnAdA5nBdB . Let ma-
trices TAB and TBA represent the light propagation acro
interfacesA⇐B andB⇐A, respectively. They are given b

TAB5TBA
215F1 0

0 1/RG , ~5!

whereR5nA /nB , and the light propagation within layersA
or B is described by matrixTA and TB , respectively. They
can be presented by

TA5TB5Fcosd 2sind

sind cosd G , ~6!

where the phased is given byd5knAdA5knBdB , andk is
the vacuum wave vector. Now we consider the light pro
gation through a SFC(n) multilayer Sj

(n) , which is sand-

FIG. 1. Schematic representation of the SFC(1) multilay
whereEI , ER , andEO are the input, reflective, and output electr
magnetic fields, respectively.
24510
y

m-
e

s
y,

-

wiched by two medias of typeA. There are 2F j
(n) layers in

Sj
(n) , where F j 11

(n) 5nFj
(n)1F j 21

(n) , for j .2, with F1
(n)51,

F2
(n)5n. The total transmission matrix ofSj

(n) cannot be ex-
pressed as simple recursion relations, while each half
H j

(n) andGj
(n) can be expressed as

Xj
(n)5@Xj 21

(n) #n21Xj 22
(n) , ~7!

Zj
(n)5Zj 22

(n) @Zj 21
(n) #n21, ~8!

where Xj
(n) and Zj

(n) are the transmission matrices ofH j
(n)

andGj
(n) , respectively. Therefore, the total transmission m

trices ofSj
(n) can be expressed as follows:

M j
(n)5Zj

(n)Xj
(n)5Fm11

(n)~ j ! m12
(n)~ j !

m21
(n)~ j ! m22

(n)~ j !
G . ~9!

From this expression the transmission coefficient is given
terms of the matrixM j

(n) as

T@Sj
(n)#5

4

uM j
(n)u212

, ~10!

where uM j
(n)u2 denotes the sum of the squares of the fo

elements ofM j
(n) .

In the following investigation, we choose SiO2 ~A! and
TiO2 ~B! as two elementary layers, with the indices of r
fraction ofA andB as 1.45 and 2.3, respectively. The optic
thickness of each layer is a quarter wavelength (l0/4), where
l0 is the central wavelength. These conditions imply t
phased5pl0/2l.

Here, we first briefly display the transmission coefficie
as a function ofd/p for two different systems. Figures 2~a!
and 2~b! show the numerical result for FC(1)6 ~13 layers!
and SFC(1)6 ~26 layers!, respectively. In Fig. 2~a!, no per-
fect transmission peak can be found for thed/p approxi-
mately belonging to the intervals@0.3,0.7#. It is of great in-
terest to make a short comparison with the transmission
light through a multilayer with a mirror symmetry. From Fig
2~b! it is clearly seen that the transmission coefficient b
haves rather differently from that of Fig. 2~a!. Many sharp
transmission peaks with a unit transmission coefficient
shown in the figure. These results together seem to indi
that the symmetric internal structure can also influence
localization property of optical waves in a quasiperiodic o
tical system. In other words, the initially poor transmissi
of the optical wave can become a perfect transmission w
the symmetric internal structure exists in the quasiperio
optical multilayer. Following this section, we will extend ou
discussions to multilayers having different structure. T
purpose of these investigations is to gain insight into t
phenomenon.

III. SELF-SIMILAR TRANSMISSION SPECTRA

A. Analytical results

For the case of the ideal Fibonacci sequence@FC(1)#,
Kohmoto et al.26 concluded the corresponding transfer m
trices exist in a six-cycle property aroundd/p5(m1 1

2 ),

,

4-2
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wherem is an integer. For the case of a symmetric Fibona
sequence@SFC(1)#, we found that thed/p5(m1 1

2 ) case
also has a very special feature that the matrices satisfy29

M3k11
(1) 5M3k12

(1) 52M3k13
(1) 52I , k50,1,2, . . . ,

~11!

whereI is the unit matrix. Equation~11! can be rewritten as

M j
(1)5~2I !F j

(1)
, j 50,1,2, . . . , ~12!

where F j
(1) is the j th Fibonacci number. Generally, for

given SFC(n) j , if the number of the layersN52F j
(n) , then

at d/p50.5 (l5l0), the total transfer matrix may be ex
pressed as

M j
(n)5~2I !F j

(n)
5~2I !nFj 21

(n)
1F j 22

(n)
. ~13!

From this relation we can obtain the properties of the tran
matrices of different sequences atd/p50.5. Whenn is even

M j
(n)5~2I !F j 22

(n)
5M j 22

(n) . ~14!

Namely for the SFC(n) there is a two-cycle feature atd/p
50.5.

Whenn is odd, one has

M j
(n)5~2I !(n211)F j 22

(n)
1nFj 23

(n)

5~2I !nFj 23
(n)

5~2I !F j 23
(n)

5M j 23
(n) . ~15!

Namely, there is a three-cycle atd/p50.5. Since the trans
mission matrix isI or 2I , there must be perfect transmissio
at d/p50.5 (l5l0).

FIG. 2. The transmission coefficient versusd/p for ~a! FC(1)6
~13 layers! and ~b! SFC(1)6 ~26 layers!, respectively. The indices
of refraction are chosen asnA51.45 andnB52.3.
24510
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Kohmotoet al.26 pointed out, aroundd/p50.5, the scal-
ing behavior of the transmission coefficient of FC(1) is ch
acterized by the scale factorf (1)5A114@11J(1)#212@1
1J(1)#, where the constant of motionJ(1)5(R2

21)2/4R2. In a recent paper,37 we have performed a numer
cal simulation of the transmission coefficient of the SFC(
and found thatf (1) andJ(1) can still be used to describe th
scaling property of the corresponding transmission spec
For this reason, in the following study we will mainly pa
attention to the property ofXj

(n) .

We assume thatxj (n)5 1
2 Tr@Xj 11

(n) #, yj (n)5 1
2 Tr@Xj

(n)#,
and zj (n)5 1

2 Tr@Xj
(n)Xj 11

(n) #. Then, an invariant is as
follows:26,29,33

J~n!5xj~n!21yj~n!21zj~n!222xj~n!yj~n!zj~n!21

5•••

5x0~n!21y0~n!21z0~n!222x0~n!y0~n!z0~n!21.

~16!

By the use of the recursion relation~7!, the first and sec-
ond transfer matrices are, respectively, given by

X1
(n)5TABTBTBA ,

X2
(n)5TABTB

n21TBATA ,

5TABTB
n22TBATABTBTBATA5X2

(n21)X1
(n) . ~17!

Because the propagation matricesXj
(n) are all unimodular,

when applying Eq.~17!, one finds from the relation~16! that
J(n) is a constant which is given by

J5J~n!5J~n21!5•••5J~1!5sin4d~R221!2/4R2.
~18!

A proof is shown in the Appendix. The invariant of Eq.~18!
is always positive and represents the strength of the effec
quasiperiodicity. By defining a three-dimensional vectorr l
5@xl(n),yl(n),zl(n)#, then

r l 115@xl 11~n!,yl 11~n!,zl 11~n!#5T@xl~n!,yl~n!,zl~n!#.

In the renormalization-group point of view, the mapT can
be regarded as a scale transformation. The orbits given
successive iterations ofT are confined on the two
dimensional manifold uniquely determined byR. When n
51, the nonlinear dynamical map is given explicitly by

r l 115T1@r l #5@zl~1!,xl~1!,2xl~1!zl~1!2yl~1!#.

The mapT1 has a six-cycle orbit given by3

As~0,0,a!→Bs~2a,0,0!→Cs~0,2a,0!→Ds~0,0,2a!

→Es~a,0,0!→Fs~0,a,0!→As , ~19!

wherea5A11J. ThenAs , Bs , Cs , Ds , Es , andFs are the
fixed points ofT1

6. Linearization ofT1
6 around these fixed

points yields the Jacobian matrix of the mapping. The eig
4-3
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value of the linearized equation gives the scale factora(1),
which can be exactly calculated as

a~1!5118a414a2A114a4. ~20!

In fact, the two fixed points ofT1
6, As andDs , are antipo-

dal andAs is mapped toDs by three iterations. The rescalin
parameter is calledf (1) which can be expressed a
follows:26

f ~1!5Aa~1!52a21A114a4. ~21!

Whenn52, we obtain the following results:

xl 11~2!52xl~2!zl~2!2yl~2!,

yl 11~2!5xl~2!, ~22!

zl 11~2!52xl~2!@2xl~2!zl~2!2yl~2!#2zl~2!.

Expressions~22! can also be written as a nonlinear dynam
cal mapr l 115T2@r l #. Clearly, we have a four-cycle orbit,

Ap~0,a,0!→Bp~a,0,0!→Cp~0,2a,0!→Dp~2a,0,9!→Ap .

~23!

With linearization ofT2
4 around these fixed points (Ap ,

Bp , Cp , andDp!, one of the eigenvalues of the fixed poin
of period four is

a~2!51216a2132a414a~4a221!A4a222. ~24!

We note that, like the caseT1
6, Ap and Cp are antipodal

andAp is mapped toDp by two iterations. Then the rescalin
parameter is

f ~2!5Aa~2!5~4a221!12aA4a222. ~25!

Whenn53, we have

xl 11~3!52x~3! l@2xl~3!zl~3!2yl~3!#2zl~3!,

yl 11~3!5xl~3!, ~26!

zl 11~3!58xl~3!3zl~3!24xl~3!2zl~3!24xl~3!zl~3!

1yl~3!.

Equation~26! can be expressed asr l 115T3@r l #. It is easy to
verify that the mapT3 also has the six-cycle orbit of Equa
tion. ~19!. With the same analytical technique above, t
rescaling factorf (3) is obtained exactly and given by

f ~3!5 1
2 ~Ab221Ab12! where

b521784a423584a614096a8. ~27!

We now turn to the casen54 for which the nonlinear
dynamical map is given by

xl 11~4!58xl~4!3zl~4!24xl~4!2zl~4!24xl~4!zl~4!

1yl~4!,
24510
yl 11~4!5xl~4!,

zl 11~4!516xl~4!4zl~4!28xl~4!3zl~4!212xl~4!2zl~4!

14xl~4!yl~4!1zl~4!. ~28!

From the above expressions, we can define a renorma
tion mapT4 which has the four-cycle orbit of Eq.~23!. Con-
sequently, the rescaling factorf (4) is

f ~4!5
1

2
~Ac221Ac12! where

c521576a422304a612304a8. ~29!

We have derived the recursion relation of the dynami
maps of the FC(n) for several special cases (n51,2,3,4). It
is rather straightforward to prove that the FC(n) can be di-
vided into two kinds:n is odd andn is even. The six-cycle
fixed points for oddn and four-cycle fixed points for evenn
are the common properties. It should be noted that, in
following study, the obtained rescaling factorsf (n) (n
51,2,3,4) will be applied to describe the self-similar pro
erties of transmission spectra of the symmetric Fibona
class multilayers.

B. Numerical results

To illustrate the scaling properties of the transmiss
spectra of the SFC(n), we numerically study the transmis
sion coefficients for $@SFC(1)12,SFC(1)15#%,
$@SFC(3)6 ,SFC(3)9#%, and $@SFC(2)8 ,SFC(2)10#,
@SFC(4)5 ,SFC(4)7#%. The main results are shown in Figs.
and Figs. 4 for two different families of the SFC(n) ~odd n
and evenn), respectively. Figures 3~a! and 3~b! show the
transmission spectra of the 12th and 15th generation of
SFC(1) aroundd/p, respectively. It is clearly seen that the
two figures are similar except for the scaling. This conc
sion is also true for the 6th and 9th generation of the SFC
@see Figs. 3~c! and 3~d!#. Furthermore, Figs. 3 confirm tha
when n is odd, the transmission spectra of the SFC(n) are
similar with a three-cycle orbit about thed/p. In Fig. 4 we
show the transmission coefficient for another family
SFC(n) (n is even! with n52 and 4, respectively. Whenn
52, the 8th~816 layers! and 10th~4656 layers! generation
of quasiperiodic optical multilayers are studied. For the c
of n54, we chose the fifth~610 layers! and seventh~10946!
generation of the optical sequences. The self-similar prop
ties are also demonstrated clearly in these figures. Note
generation change of the chosen sequences in these fig
then, their similarity well confirms the above theoretical pr
diction of the two-cycle orbit of the transmission coefficie
of SFC(2m), where m51,2, . . . . Recall that the self-
similarity of the transmission coefficients of the FC(1) is s
cycle at d/p50.5,26 and the FC(2) is quasi-four-cycle.29

The discrepancy is caused by the symmetry. The scalin
also displayed in these two figures. From Figs. 3 we have
scaling factors f (1)5(0.516520.5)/(0.503 2520.5)
'5.076 92 and f (3)5(0.505920.5)/(0.500 09520.5)
'62.105 26 for SFC(1) and SFC(3), respectively. We also
4-4
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FIG. 3. The transmission coefficient versu
d/p for a family of SFC(n) with odd n. ~a! and
~b! for the casen51, ~c! and ~d! for the casen
53, respectively.
-
ult

be

n
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3,

e

respectively obtain the scaling factors of SFC(2)@Figs. 4~a!
and 4~b!# and SFC(4)@Figs. 4~c! and 4~d!#. They aref (2)
5(0.505520.5)/(0.50071520.5)'7.692 31 and f (4)
5(0.505920.5)/(0.500 14220.5)'41.549 30. These nu
merical results are well predicated by our analytical res
of Eqs. ~21!, ~25!, ~27!, and ~29!. As can be seen, whenR
5nB /nA is given, the invariant J5J(n)5sin4d(R2

21)2/4R2 is the same for all the SFC(n) at the central wave-
length~corresponds tod/p50.5). FornA51.45,nB52.3, we
obtain J'0.228 375 and the scaling factors can
obtained by calculating Eqs.~21!, ~25!, ~27!, and~29!. They
are f (1)'2.456 751A7.035 62'5.109 22, f (2)'3.9135
12.2135A2.9135'7.697 28, f (3)'0.5(A3865.79
1A3869.79)'62.1947, andf (4)'0.5(A1844.41A1848.4)
'42.97211 for the SFC(1), SFC(2),SFC(3), andSFC(4),
respectively.

IV. POSITIONS OF PERFECT TRANSMISSION PEAKS

From the form of Eq.~10! it is clear that the transmissio
coefficient is determined entirely by the properties of t
24510
s

matrix M j (n). Hence, in order to gain a deep insight into t
physical implication of the numerical results in Figs. 2,
and 4, it is instructive to analyze the transfer matricesXj (n),
Zj (n), andM j (n). In this section we restrict ourselves to th
optical system of SFC(1). From Eqs.~5!–~8!, the transfer
matricesXj (n) andZj (n) are, respectively, given by

X0
(1)5F cosd 2R sind

sind

R
cosd G , X1

(1)5Fcosd 2sind

sind cosd G ,

X2
(1)5F cos2d2

sin2d

R
2~11R!cosd sind

S 11
1

RD cosd sind cos2d2R sin2d
G , . . . ,

~30!

and
s
FIG. 4. The transmission coefficient versu
d/p for a family of SFC(n) with evenn. ~a! and
~b! for the casen52, ~c! and ~d! for the casen
54, respectively.
4-5
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Z0
(1)5X0

(1) , Z1
(1)5X1

(1) ,

Z2
(1)5F cos2d2R sin2d 2~11R!cosd sind

S 11
1

RD cosd sind cos2d2
sin2d

R
G , . . . .

~31!

If we write the matrices of Eq.~30! in a general form

Xj
(1)5FC D

E FG , ~32!

whereC, D, E, andF are four elements ofXj
(1) , then it can

be shown thatZj
(1) can be represented by these four eleme

as

Zj
(1)5FF D

E CG . ~33!

The total transfer matrixM j
(1) can now be rewritten by sub

stituting Eqs.~32! and ~33! in Eq. ~9!,

M j
(1)5Zj

(1)Xj
(1)5FCF1DE 2DF

2CE CF1DEG .
It can then be seen that the diagonal elements ofM j

(1) satisfy
ffi

he

24510
ts

m11
(1)~ j !5m22

(1)~ j !. ~34!

By using the condition detuM j
(1)u51, it is not difficult to

prove that the standard expression of Eq.~10! will be deter-
mined by a relation involving only the off-diagonal elemen
For theSj

(1) , the expression ofT@Sj
(1)# is then

T@Sj
(1)#5

4

@m12
(1)~ j !1m21

(1)~ j !#214
. ~35!

It follows directly from Eq. ~35! that the reflection coeffi-
cient will vanish only when

m12
(1)~ j !1m21

(1)~ j !50. ~36!

We should point out that Eq.~36! is the key expression in the
following study. In fact, Eq.~35! can be applied quite gen
erally to any kind of one-dimensional optical multilaye
with a mirror symmetric.

In what follows, the above-obtained formula~36! will be
applied to the symmetric Fibonacci multilayers construc
according to the substitution rule~3! of n51. Consider first
the second generation SFC(1), which is arranged asBAAB
and the corresponding total transfer matrix is given by
M2
(1)5Fm11

(1)~2! m12
(1)~2!

m21
(1)~2! m22

(1)~2!
G5F ~11R!2cos 4d2~R21!2

4R
2

@~11R!2cos 2d1R221#sin 2d

2R

@~11R!2cos 2d112R2#sin 2d

2R

~11R!2cos 4d2~R21!2

4R

G , ~37!
r
)
nts

nts
such that the sum of the off-diagonal elements of Eq.~37!
can be explicitly written as

m12
(1)~2!1m21

(1)~2!5
~12R2!sin 2d

R
. ~38!

From Eqs.~36! and~38! it is evident that, whenRÞ1, the
condition for the existence of perfect transmission coe
cients is entirely determined by sin 2d50. As a result, the
corresponding phasesd are

dk~2!5kp/2, k50,1,2, . . . . ~39!

If the phased is expressed in units ofp, for the phased in
the interval@1,2#, three phases which uniquely determine t
positions of the perfect transmission peaks are given by

Pk~2!5dk~2!/p5k/2, k50,1,2. ~40!

This result is exemplified in Fig. 5~a!, where the solid line is
the numerical result and the analytical results of Eq.~40! are
indicated by chain lines in this figure.

To have a better understanding of this technique and
emphasize the role played by the off-diagonal elements
-

to
of

the transfer matrix of the optical multilayers with a mirro
symmetry, we shall apply it to the exactly soluble SFC(14.
Similarly, in this case, the associated off-diagonal eleme
are given by

m12
(1)~4!52

sin 2d

16R3
@A1141B1cos 2d1C1cos 4d#

3@A114R2B1R cos 2d1C1cos 4d#, ~41!

m21
(1)~4!5

sin 2d

16R3
@A114R22B1R cos 2d1C1cos 4d#

3@A114R31B1R2cos 2d1C1cos 4d#, ~42!

whereA152R31R21R21, B1524(11R), andC15(1
1R)3. Consequently, the sum of two off-diagonal eleme
can be expressed as

m12
(1)~4!1m21

(1)~4!5
~R221!sin 2d

8R3
@A21B2cos 2d

1C2cos 4d1D2cos 6d#, ~43!
4-6



sp
ue

in
so

t

n

s

m-
rs.
ne-
the

d in
ates
till
ic-

ym-
ce
pec-
b-
s.
ro-

ce
un-
the

PERFECT TRANSMISSION AND SELF-SIMILAR . . . PHYSICAL REVIEW B 63 245104
where A25224R14R224R312R4, B252(11R)2(1
26R1R2), C2522(11R)2(11R2), and D25(114R
16R214R31R4). From Eqs.~36! and ~43!, for a givenR,
there exist some special values of phased where the electro-
magnetic waves corresponding to these phases are tran
ent with unit transmission coefficients. These special val
of d are the solutions of the following equation:

Fcos 2d2
11R2

~11R!2GFcos22d2
11R2

~11R!2Gsin 2d50.

~44!

If p<d<2p, from the above equation one can obta
eight solutions that directly determine the positions of re
nant peaks. These positions are

P0~4!50.0, ~45!

P1~4!5
arccos@A11R2/~11R!#

2p
,

P2~4!5
arccos@~11R2!/~11R!2#

2p
,

P3~4!5
1

2
2

arccos@A11R2/~11R!#

2p
,

P4~4!50.5,

P5~4!5
1

2
1

arccos@A11R2/~11R!#

2p
,

FIG. 5. The transmission coefficient versusd/p for ~a! SFC(1)2
~four layers! and ~b! SFC(1)4 ~ten layers!, respectively. The chain
lines are the theoretical results of resonant positions.
24510
ar-
s

-

P6~4!512
arccos@~11R2!/~11R!2#

2p
,

P7~4!512
arccos@A11R2/~11R!#

2p
,

P8~4!51.0.

When R5nB /nA51.45/2.3'0.630 437 8, we have eigh
resonant peaks at

P0~4!50.0,

P1~4!'arccos~0.725 043 7!/2p'0.120 909 7,

P2~4!'arccos~0.525 688 4!/2p'0.161 903 8,

P3~4!50.52P1~4!'0.379 090 3,

P4~4!50.5,

P5~4!50.51P1~1!50.620 909 7,

P6~4!51.02P2~4!'0.838 069 2,

P7~4!51.02P1~4!'0.879 090 3,

and

P8~4!51.0.

By applying Eq.~10! again, we calculate the transmissio
coefficient as a function ofd/p for the fourth generation of
the SFC(1). Asshown in Fig. 5~b!, our numerical result
~solid line! agrees very well with the theoretical prediction
~chain lines!.

V. SUMMARY

We have studied the light-waves propagation in the sy
metric Fibonacci-class quasiperiodic dielectric multilaye
We have shown that the symmetric internal structure in o
dimensional quasiperiodic systems can greatly enhance
transmission intensity. The scaling properties are retaine
all the symmetric Fibonacci-class sequences; it demonstr
that in the transmission spectra, the quasiperiodicity is s
deterministic. But the perfect transmission and the period
ity about the central wavelength demonstrate that the s
metry is an important factor. These two factors influen
each other and cause rich structures of the transmission s
tra. These phenomena will find their applications in the fa
rication of the multiwavelength narrow-band optical filter
The experimental verification of these properties of elect
magnet waves in the SFC(n) is in process.
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APPENDIX: THE INVARIANT OF THE TRACE MAP

In this appendix we shall prove Eq.~18!. First, using the
definitions: xj (n)5 1

2 Tr@Xj 11
(n) #, yj (n)5 1

2 Tr@Xj
(n)#, and

zj (n)5 1
2 Tr@Xj

(n)Xj 11
(n) #, then,J(n) of Eq. ~16! is given by

4J~n!145Tr2@X1
(n)#1Tr2@X2

(n21)X1
(n)#

1Tr2@X1
(n)X2

(n21)X1
(n)#

2Tr@X1
(n)#Tr@X2

(n21)X1
(n)#Tr@X1

(n)X2
(n21)X1

(n)#.

~A1!

From Eq.~17!, we have an initial condition

X1
(n)5X1

(n21)5•••5X1
(1)5X1 ,

X2
(n)5X2

(n21)X1 . ~A2!

Substituting these into Eq.~A1!, one gets

4J~n!145Tr2@X1#1Tr2@X2
(n22)X1

2#1Tr@X2
(n21)X1

2#

3$Tr@X2
(n21)X1

2#2Tr@X1#Tr@X2
(n21)X1#%.

~A3!
e

D

ta

24510
Using the following relations:

Tr~ab21!5Tr~a!Tr~b!2Tr~ab!,

Tr~ab2!5Tr~ab!Tr~b!2Tr~a!

~valid for any 232 unimodular matricesa andb!, Eq. ~A3!
can easily be rewritten as

4J~n!145Tr2@X1#1Tr2@X2
(n22)X1

2#

2Tr@X2
(n21)X1

2#Tr@X2
(n21)#

5Tr2@X1#1Tr2@X2
(n22)X1

2#

2$Tr@X2
(n21)X1#Tr@X1#

2Tr@X2
(n21)#%Tr@X2

(n21)#

5Tr2@X1#1Tr2@X2
(n21)#1Tr2@X2

(n22)X1
2#

2Tr@X1#Tr@X2
(n21)#Tr@X2

(n22)X1
2#

54J~n21!14.

And finally we obtain

J~n!5J~n21!5•••5J~1!5sin4d~R221!2/4R2.
~A4!

From Eq. ~A4! one finds that, for the normal incidence o
light (d5p/2), the recurrence relation ofJ(n) is determined
only by the physical properties of chosen optical materia
er,

ce

ys.
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