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Resonant transmission of light has been observed in symmetric FibonacdiSI@ multilayers,

which is characterized by many perfect transmission peaks. The perfect transmission dramatically
decreases when the mirror symmetry in the multilayer structure is deliberately disrupted. Actually,
the feature of perfect transmission peaks can be considered as general evidence for dielectric
multilayers with symmetric internal structure. It opens a unique way to control light
propagation. ©2002 American Institute of PhysicDOI: 10.1063/1.1468895

Motivated by the pioneering work of Yablonovitthnd  expressed as;=1{G; ,H;}, whereG; andH; are Fibonacci
John? much attention has been paid to photonic crystalssequencesG; andH; obey the recursion relations
which forbid the propagation of photons with a certainrange  ~ _ ~ H=H. .H.
of energies known as the photonic band gap8GS. e
Nowadays, great effort is being put in the manipulation ofwith Go=Hy=B andG;=H;=A. Therefore,
photonic energy bandé®BG) in_crystals in order to make_ S=G;_1G;_sH;_,H; ;. 1)
photons become a real alternative to electrons as information
carriers? One of the fundamental points in controlling the =~ The system presented here is a symmetric Fibonacci
propagation of a lightwave is how to select photons of cermultilayer (SFM) obtained with two different materialé
tain frequencies and to obtain a high transmittivity at thoseandB, with refractive indeXn;} and thicknes$d;}, respec-
desired frequencies. Thereafter, the studies on PBG haviely, (i=A,B). The SFM with generatiois; has F; di-
been extended to include quasiperiodic photonic structureglectric layers, and the Fibonacci numbgr=F;_,+F;_,
Compared to the periodic structures, more structural paramifor j>2) with Fo=0 andF;=1. Now we consider the op-
eters can be tuned in the quasiperiodic designs, thus openifigal propagation through the SFM. In the case of normal
a way to a wide range of techno|ogica| app"ca’[ions in SevanidenCE and polarization parallel to the multilayer Surfaces,
eral different fieldS. the transmission through the interfaBe-B is given by the

The Fibonacci sequence is one of the well-known ex{ransfer matrix

amples of one-dimensiondflD) quasiperiodic structures. 1 0
The first Fibonacci superlattice was produced by Merlin TABzTB‘jz } 2
et al® in 1985. Since then, a considerable interest has been 0 r

focused on the exotic wave phenomena of Fibonaccivherer =ng/n,. The light propagation within a layeX (or
systems® In 1987, Kohmoto, Sutherland, and Iguchi pro- B) is described by a matri¥ g, :

posed the photonic Fibonacci multilayéPd. ater, interesting
issues related to optical propagation in various quasiperiodic
structures have been investigatéd:* Most of the studies

concentrated on photonic localization, and the intensity O(Nhere the phaséa, is given bys,=knid; (i=A or B), and
I 1~ )

the transmission peak was not well studied in previous rey iq yhe vacuum wave vector. Then, the whole multilayer is
search. However, these items are important for applicationrcepresemed by a product matri; relating the incoming

in optical communication. It is noteworthy that the transport, . yeflected waves to the transmitted wave. The total trans-
of electrons in a 1D random-dimer model exhibits a . i<cion matrix ofS has the form
]

localization—delocalization transitidR. Physically, the ex- _ _
tended electronic states in this system are due to the symme- B mMyg(j)  mMyoAj)
try of its internal structuré® In this letter, we report an op- W my(i) mao(i) |

tical property of Fibonacci Ti®/SiO, multilayers with o ) i
internal symmetry. Considering the symmetry in the structdishown in Eq(1)]

The symmetric Fibonacci sequence can be generated f'd USing the unitary condition diet|=1, the transmission
the following way. Thejth generation of the sequence can beCo€fficient of the SFM can be written as

COSOpg) —SINda(p)

Ta®) = : 3)

SiNda@)  COSOa(E)

4

4 4
T[S = = - - , 5
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Where|Mj|2 denotes the sum of the squares of the four elegenerationss, Sg, andSg, respectively. It is evident that in
ments ofM;. Then, if the conditiorm,(j)+m,(j)=0, is  the case of a small number of layers, regions of minimum
satisfied, perfect transmission peaks are indeed obtained. tlansmission appears, which may eventually give rise to total
should be pointed out that Ep) is generally applicable to  reflection as the number of layers increases. In general, by
any kinds of optical multilayers with a mirror symmetry.  jqcreasing the number of layers, the quasiperiodicity be-
It is well known that the transfer matrix of a Fibonacci comes stronger, and more and more transmission zones die

sequence has a .S'X'CYde pr%perty arouic= ‘?B:.é:(m . out gradually and some of them eventually approach zero
+1/2)7, wherem is an integet? For a symmetric Fibonacci . . . e
transmission. In this way, a 1D photonic band gap is finally

sequence, the equation for the transmission maifjxcan ’ ) Y
also be considered as a dynamical map from the point opbtained, as happens in the cases of other quasiperiodic

view of a renormalization groul.Around 8,= 8= —=(m  Structures. Figure 1 indicates that the measured transmission
+1/2)m, we haveM; =(—-1)Fi (j=0,1,2,...), wherel is  peaks are in good agreement with the numerical calculations.
the unit matrix andF; is the Fibonacci number. Namely, On the other hand, it is important to compare the optical
there is a three-cycle property @t&=(m+1/2)7. And the behavior of the SFM with those of Fibonacci SiQiO,
perfect transmission is expected since the transmission maaultilayers (without symmetry.}? (Note that in these muilti-
trix is | or —1. This property implies that the transmission |ayers, the optical transmission does not change if the dielec-
coefficient of the SFM has a type of self-similarity, i.e., {ric materialsA andB are exchangegiUnlike the poor trans-
T(Si):T(SHs)-_ o o __mission of the optical wave usually observed in ordinary
In.th(.e expenrr']ents,'we cho;e titanium dioxide gnd SIII'Fibonacci multilayeré,2 in the SFMs perfect transmission
con dioxide as dielectric materials and B, respectively. . . A
peaks have been obtained experimentédly shown in Fig.

Around the wavelength of 700 nm, their refractive indices1 M t mod ith perfect t o .
are n,=2.30 andng=1.46, respectively. The multilayer )- More resonant modes with perfect transmission oceur in

films were fabricated by electron-gun evaporation on a glass
substrate. Before the evaporation, the pressure of the cham-
ber was lower than 2 10°° Torr. The films were formed 10
under an oxygen atmosphere: the pressureXd@ * Torr
for TiO, deposition, and 0.8 10 * Torr for Si0,. The film
thickness was controlled by quartz-crystal monitoring at a
frequency of 5 MHz, and also the quarter-wave and half-
wave optical thicknesses were optically monitored at 700
nm. For the sake of simplification, the thicknesses of two
materials in our films were chosen to satisfy the condition
nada=ngdg, which gives the same phase shift in the two
materials, i.e.,0po= 6g= 4. Finally, the central wavelength
was set to 700 nm or so, which givels = (700 nm)/f, ;
=76.1 nm, anddg= (700 nm)/Ag=120.0 nm. 0.0
The optical transmission of these SFM films has been
investigated. The transmission spectra were measured by us- 3 -1
ing a U-3410 spectrophotometer in the range of wavelength 1/A (10 cm
from 185 to 2600 nm. Flgure 1 shows the eXpe_rlmenta"yFlG. 2. Measured transmission coeffici@nas a function of wave number
measured and the theoretically calculated transmission Coef-1 aroundy ~1=1.43x 10* cm™?, i.e., 5=0.5x for SFMs:(a) S with 68

ficients as a function of wave number for SFM films with layers; andb) Sg with 16 layers, respectively.
Downloaded 12 Jun 2003 to 218.94.36.117. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp

0.5 4

0.0

1.0

Transmission




Appl. Phys. Lett., Vol. 80, No. 17, 29 April 2002 Peng et al. 3065

L0 10 It has been demonstrated that the mirror symmetry plays an
V/ important role in obtaining the perfect transmission features
05 05, in SFMs. This_pheno_menon can pe regqrded as a generic
= feature of multilayer films possessing an internal symmetry.
ks Due to the transmittivity of resonant optical modes and to the
2 ool , : . (a) 00l WA . ©) rich structure of transmission spectra, the SFM films are suit-
‘g o > 520 2 o S able for a wide range of potential applications where the
% control of the propagation of light waves is a crucial require-
& ment. We expect that this work will also contribute to the
B s 0.5 multiwavelength narrow-band optical filters, the wavelength
division multiplexing system, and photonic integrated cir-
(b (d) cuits, where high-transmission and high-resolution monofre-
N R guency outputs are particularly desired.
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