
Eur. Phys. J. B 25, 497–503 (2002)
DOI: 10.1140/epjb/e20020055 THE EUROPEAN

PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. In the tight-binding approximation, we have investigated the behaviour of persistent currents in
a one-dimensional Thue-Morse mesoscopic ring threaded by a magnetic flux. By applying a transfer-matrix
technique, the energy spectra and the persistent currents in the system have been numerically calculated. It
is shown that the flux-dependent eigenenergies form “band” structures and the energy gaps will enlarge if
the site energy increases. Actually, the site energy and the filling-up number of electrons are two important
factors which have much influence upon the persistent current. Increment of the site energy in the system
will lead to a dramatic suppression of the currents. When the highest-occupied energy level is on the top
of the band, the total current is limited; otherwise, the persistent current increases by several orders of
magnitude. Generally, this kind of large scale change in the magnitude of the current can easily be observed
in the vicinity of band gaps. The parity effect in the Thue-Morse ring is also discussed.

PACS. 73.23.Ra Persistent currents – 61.44.Br Quasicrystals

1 Introduction

With the development of technology for the fabrication
of submicrometer devices, mesoscopic systems have at-
tracted much attention in the past decades. It is well
known that in mesoscopic systems the semiclassical trans-
port theory is invalid and quantum effects have to be taken
into account. The persistent current (PC) is one of the
distinguishing features of quantum interference. Although
this phenomenon was predicted by Büttiker et al. [1] a
long time ago, and there has been a lot of theoretical and
experimental work [2–5] performed, the problem is still
not well understood. For example, the currents measured
by experiments are much larger than the theoretical ex-
pectations [2,3].

The disorder of the system and the electron-electron
interaction are supposed to be the two important factors
affecting the persistent current [6,7]. It has been shown
that the short-range Coulomb repulsion enhances the am-
plitude of PC in the system of spinless fermions [8,9]. In
order to clarify the large PC discrepancy between the the-
ory and the experiment, more realistic systems, such as
the spinful system and also two- and three-dimensional
models, have been taken into account [11–14]. In addition,
the importance of many-channel-effect and geometrical in-
fluence are recently reported [15,16]. However, previous
studies concentrate most on either periodic or disordered
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systems. Only a few studies [17] are based on the structure
between periodic and disordered ones.

It is well known that the Thue-Morse (TM) structure is
a typical example in a one-dimensional (1D) aperiodic sys-
tem [18]. Theoretical studies show that a TM lattice has
a singular continuous Fourier spectrum [19,20], Cantor-
like energy spectrum [19] and phonon behaviour [21]. The
property of TM lattice may be in between that of a peri-
odic and a quasiperiodic lattice [22,23]. Experimentally,
since the first realization of Fibonacci superlattices by
Merlin et al. [24], much attention has been paid to the
exotic wave phenomena in Fibonacci systems. A TM su-
perlattice, at the same time, has also been fabricated and
investigated by Raman scattering [25] and by X-ray
diffraction [26]. In principle a mesoscopic ring with TM
structure can be achieved experimentally. In this paper,
we investigate the behaviour of persistent current in a 1D
TM mesoscopic ring. Our calculations provide detailed in-
formation about the structural influence on currents.

2 Theoretical model

The Thue-Morse sequence can be obtained by the
substitution rule A → AB and B → BA with
the initial generation S1 = {AB}. For example,
S4 = {ABBABAABBAABABBA}. In general, the jth
generation of TM lattice consists of 2j−1 A and B units,
respectively. Here the TM mesoscopic ring is constructed
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by a finite TM sequence withN sites, where the site energy
is vA or vB, respectively. Obviously N = Fj holds, where
Fj = 2j is the TM number. Considering the tight-binding
approximation with on-site model, the Schrödinger equa-
tion for an electron in a 1D aperiodic mesoscopic ring can
be written as [17]

tψl+1 + tψl−1 + vlψl = Eψl, (1)

where l is the site index, the site energy vl = vA (or vB)
if the lth atom is A (or B), and t is the hopping integral.
In this on-site model, we can choose vA = −vB = v and
t = −1 without loss of generality. Equation (1) can be
expressed in the matrix form(

ψl+1

ψl

)
= Tl+1,l

(
ψl
ψl−1

)
, (2)

where the transfer matrix

Tl+1,l =
(
−(E − vl) −1

1 0

)
·

A magnetic flux Φ threaded through the ring will lead to
the twisted boundary conditions for the wave functions of
the electrons [1], hence the equation for the global transfer
matrix takes the form(

ψN+1

ψN

)
= Mj

(
ψ1

ψ0

)
= ei2πΦ/Φ0

(
ψ1

ψ0

)
, (3)

where Φ0 = hc/e is the flux quantum and Mj =∏N
l=1 Tl+1,l.
By denoting χj = 1

2 trMj, the flux-dependent energy
spectra of an electron in the mesoscopic ring can be ob-
tained from

χj = cos(2πΦ/Φ0). (4)

The trace map of TM lattice [27] follows

χj+1 = 4χ2
j−1(χj − 1) + 1, (5)

and the initial conditions have the form

χ1 =
(
E − v2

)
/2− 1, χ2 =

(
E − v2

)2
/2− 2E2 + 1.

Here we do not distinguish vA and vB since v2
A = v2

B under
the condition vA = −vB = v.

The persistent current in the ring can be achieved by

I = −c ∂
∂Φ

E(Φ). (6)

For an individual energy level, the contribution to the per-
sistent current is

In(Φ) = −c∂En(Φ)
∂Φ

= −c∂En
∂χj

∂χj
∂Φ

=
2πc
Φ0

sin(2πΦ/Φ0)
∂χj/∂En

· (7)

From the trace map of TM lattice, ∂χj/∂En can be
obtained recursively as

∂χj+1

∂E
= 4χ2

j−1

∂χj
∂E

+ 8χj−1
∂χj−1

∂E
(χj − 1) (8)

with the initial conditions

∂χ1

∂E
= E,

∂χ2

∂E
= 2E(E2 − v2)− 4E.

At zero temperature, the number of electrons in the spin-
less fermion system Ne equals the highest-occupied level
labeled by the indexm. So the energy of the system follows

E(Φ) =
m∑
n=1

En(Φ), (9)

and the total persistent current in the system satisfies

I =
m∑
n=1

In(Φ) =
2πc
Φ0

m∑
n=1

sin(2πΦ/Φ0)
∂χj/∂En

· (10)

3 Results and discussion

It is easy to understand that the properties of the per-
sistent currents are ultimately determined by the flux-
dependent energy of the system. Therefore we first con-
sider the energy spectra of the TM mesoscopic rings
threaded by a magnetic flux Φ. Based on equations (4, 5)
and (9), we carry out numerical calculations on the energy
spectra. Figures 1a and b give the flux-dependent energy
spectra for v = 0.1 and v = 0.5 respectively in the TM
ring with j = 7 (N = 128). The electron eigenenergies
form a “band” structure. When the on-site energy v in-
creases, the energy gap enlarges accordingly, as it happens
in other system [19]. This feature becomes much clearer in
Figures 1c and d, where the details of the energy spectra
are shown. The parameter v represents the on-site energy
of the electrons. In our case in order to simplify the calcu-
lation, we choose vA and vB for the two building units A
and B, respectively, which have the same absolute value
and are opposite in sign, i.e. vA = v and vB = −v. There-
fore, in some sense, the quantity v represents the strength
of non-periodicity. Here we discuss a spinless fermion sys-
tem with tight-binding approximation, which means that
each electron occupies only a single energy level. When
the aperiodic strength of the structure v increases, the de-
pendence of the energy levels on the flux is deformed and
smoothed as shown in Figures 1c and d, which is similar
to the influence of disorder on the energy levels reported
by Kusmartsev [28]. This explains why the energy lev-
els split into groups and the energy gaps enlarge when
v increases (also see Figs. 1e and f). Certainly this fea-
ture will eventually affect the behaviour of the persistent
currents. Figures 1e and f show the energy eigenvalues
of the corresponding systems when the magnetic flux is
kept at Φ/Φ0 = 0.3, and v = 0.1 and v = 0.5, respec-
tively. The difference of the neighbouring energy levels
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Fig. 1. The flux-dependent energy spectra in a mesoscopic Thue-Morse ring: (a) and (b) show the spectra for −1/2 < Φ/Φ0 < 1/2
with different on-site energy v: (a) v = 0.1, (b) v = 0.5. (c) and (d) show the details of the spectra (a) and (b), which demonstrates
the deforming and smoothing of energy-flux dependence caused by non-periodicity of the structure. While (e) and (f) show
the energy eigenvalues for Φ/Φ0 = −0.3 with different v: (e) v = 0.1, (f) v = 0.5. The inserts give the difference between the
neighbouring energy levels.

in the case of v = 0.5 is one order of magnitude larger
than that in the case of v = 0.1. Unlike the Fibonacci
structure, here the flux-dependent energy spectra do not
exhibit apparent self-similarity; actually it is symmetric.
The origin of the symmetric nature can be traced back to
the property of the transfer matrix of the TM structure.
If we transform energy from E to −E, the transfer ma-
trix will be changed accordingly following TAB → −TBA
and TBA → −TAB. Then it can be proven that the trace
map of Mj =

∏
l Tl+1,l is unchanged. Therefore the energy

spectra should be symmetric.
The persistent current in a Thue-Morse mesoscopic

ring can be obtained from equations (7, 8) and (10). The

calculations indicate that the persistent current is dom-
inated by two important factors. One is the filling the
number of electrons in the system, and the other is the
site energy. Figures 2a and b demonstrate the behaviour
of persistent currents for different filling-up numbers and
for different site energies (v = 0.1 and 0.5, respectively).
We are particularly interested in the properties near the
edge of large energy gaps. The insets of Figures 1e and f
illustrate that there is a big gap between the 84th and
the 85th levels. Figure 2a plots the persistent current I
against the magnetic flux Φ/Φ0 when the number of elec-
trons varies from n = 84 to n = 86 at v = 0.1. The
magnitude of the current is dramatically suppressed when
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Fig. 2. The persistent current I vs. flux Φ for various filling-up number of electrons Ne: (a) v = 0.1, (b) v = 0.5.
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Fig. 3. The persistent current I vs. flux Φ for various filling-up numbers of electrons at half-filling case: (a) v = 0.1, (b) v = 0.5.

the filling number of electrons is n = 85. When v becomes
larger, for example, v = 0.5 (Fig. 2b), the suppression of
the currents becomes more evident. Actually the current
decreases by four orders of magnitude when comparing the
cases of n = 84 or 86. Generally, when the electrons in the
system are filled just up to the “top” of a band, the current
is strongly limited, otherwise the current in the system be-
comes fairly large. However, an exception happens in the
case of half-filling, as shown in Figures 3a and b. Mean-
while as v becomes larger, the current drops dramatically
when the number of electrons equals 64 (n = 64). The
physical origin of this feature remains unclear.

The persistent current in the aperiodic ring is also de-
termined by the site energy in the system. Figure 4 gives
the persistent currents for different values of v. It is ev-
ident that for a system with fixed electron number, the
increment of v always suppresses the magnitude of the
current. The similar characteristics on the conductance
have been discussed by Avishai and Berend [29]. It can be
understood from the following two aspects. On one hand,
when the potential strength in the ring increases, the scat-
tering rate is enhanced, hence the current must decrease.
On the other hand, increasing v means that the non-
periodicity of the structure becomes stronger, then the
dependence of energy level on the flux becomes smoother

as was mentioned above. Therefore the current contribu-
tion coming from these energy levels will decrease accord-
ing to equation (7). Consequently the total currents will
decrease. If the number of electrons changes in the sys-
tem, the behaviour of the currents will be much compli-
cated. It is interesting to note that when the electrons
are filled up to the edge of a large energy gap, a slight
increment of the site energy will decrease the persistent
current dramatically. In some case the change of currents
∆I(v) can be as high as one order of magnitude (as shown
in Fig. 4a). On the other hand, due to the fact that the
contributions to the current from the nearby two energy
levels are opposite in sign, the change of currents ∆I(v) in
the system with an even number of electrons is much less
than that with an odd number of electrons. This feature
can easily be seen by comparing Figure 4a (Ne = 43)) and
Figure 4b (Ne = 44), as well as Figure 4c (Ne = 7) and
Figure 4d (Ne = 6). However, an exception exists in the
case of half-filling (as shown in Figs. 5a and b). Unlike the
other cases, the systems with Ne = 64 (even electrons) and
with Ne = 63 (odd electrons) have dramatically decreased
current.

It can be inferred from Figure 4 that the parity effect is
an important feature of persistent current in a mesoscopic
ring. Kusmartsev et al. [30] have discussed the parity ef-
fect in the interacting fermion systems and in the spinful
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Fig. 4. The persistent current I vs. flux Φ for various on-site energies v: (a) Ne = 43, (b) Ne = 44, (c) Ne = 7, (d) Ne = 6.
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Fig. 5. The persistent current I vs. flux Φ for various on-site energies at half-filling case: (a) Ne = 64, (b) Ne = 63.

systems. For a TM mesoscopic ring, there are three in-
teresting features related to the parity effect. First, in a
system with odd electrons, the flux-dependent persistent
current (shown in Figs. 4a or 4c) behaves like a diamagnet,
whereas in the system with even electrons, the dependence
of currents on magnetic flux (shown in Figs. 4b or 4d) is
like a paramagnet. This type of parity effect in the TM
ring is similar to the results in the disordered ring [30]
and in the Fibonacci structure [17]. But in our case, there
exits a difference, i.e., the persistent currents depend lin-
early on the magnetic flux in the even-electron systems.
Only in the half-filled case, the plot of the current vs. the
flux is linear in an odd-electron system (Ne = 63, to see

Fig. 5b) and is a sine-function in an even-electron sys-
tem (Ne = 64, to see Fig. 5a) (in this case, the current
shifts half a flux quantum compared with the non-half-
filled cases). Second, if the electrons are filled just to the
bottom of a big energy gap, a small increment of the site
energy will lead to the significant suppression of the PC.
Meanwhile if an electron is added or removed, the PC sup-
pression will be kept but the current-flux dependence will
shift a half flux quantum. If the electrons are not filled up
to the bottom of big gaps, the PC will not change signif-
icantly by adding or removing an electron in the system.
In other words, in this case the parity effect of electrons
is not obvious. Third, the current is less sensitive to the
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change of the site energy when the number of electrons in
the ring is even compared with the case of odd electrons,
as demonstrated in Figures 4a and 4b.

In order to address the response of the persistent
currents to the magnetic flux, the charge stiffness is also
calculated. The charge stiffness is defined as

D =
Fj
4π2

∂2E(Φ)
∂(Φ/Φ0)2

· (11)

To carry on the calculation, we use the second-order
derivatives of the trace map
∂2χj+1

∂E2
= 4χj−1

(
4χj−1

∂χj−1

∂E

∂χj
∂E

+ χj−1
∂2χj
∂E2

)
+ 8(χj − 1)

(
∂χj−1

∂E

∂χj−1

∂E
+ χj−1

∂2χj−1

∂E2

)
(12)

with
∂2χ1

∂E2
= 1,

∂2χ2

∂E2
= 2(E2 − v2) + 4E2 − 4.

Figures 6a and b give the charge stiffness with different site
energy, magnetic flux and number of electrons. Obviously,
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Fig. 7. The variation of the charge stiffness D with the on-site
energy v at half-filling case when Φ/Φ0 = 0.1, 0.2, 0.3, and 0.4,
respectively.

the charge stiffness is sensitive to the parity of electrons
in the system. It is noteworthy that if the number of elec-
trons is odd, there is a maximum in the curve. When v
is larger than the “critical point”, the persistent current
becomes insensitive to the flux. If the number of electrons
is even, the charge stiffness always goes down as the on-
site energy v increases. The near-half-filling case (shown
in Figs. 7a, b) is different from the situations presented
above and seems rather complicated. An inflection point
can be found when the external flux becomes sufficiently
strong.

4 Summary

Based on a tight-binding model, we have studied the
energy spectra and the persistent currents in one-
dimensional Thue-Morse mesoscopic rings threaded by a
magnetic flux Φ. It is shown that the electron eigenener-
gies E(Φ) form a “band” structure and the energy gaps
will enhance if the site energy increases. Meanwhile, the
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persistent currents in the rings exhibit a rich structure,
which depends on the number of electrons and the site
energy. When the highest-filling band is just at the top of
an energy band, the current is very limited. Otherwise the
large current can be observed in the TM ring. The incre-
ment of site energies always diminishes the magnitude of
the current in the system. The parity effect of electrons
has been discussed in an aperiodic mesoscopic ring. Gen-
erally, the ring behaves as a diamagnet in the odd-electron
system and as a paramagnet in the even-electron system.
An exception can always be found in the half-filling case.
The reason for this behaviour remains unclear.
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