
Delocalization of phonons and quantized thermal conductance in a random n-mer system

L. S. Cao, R. W. Peng,* R. L. Zhang, X. F. Zhang, Mu Wang, X. Q. Huang, A. Hu, and S. S. Jiang
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China

�Received 4 August 2005; published 5 December 2005�

In this paper we report the phononic transport and its influence on thermal conductance in a one-dimensional
random n-mer system. Based on an elastic wave equation, we studied frequency spectrum, phononic transmis-
sion, and thermal conductivity of the system. Multiple resonant transmissions are observed, which originate
from delocalization of phonons in the correlated disorder system. At each resonant mode, zero-Lyapunov
exponent and undecayed vibration of atoms have been found through the whole chain. Meanwhile channels are
opened for phonon transmission and heat transport. As a result, thermal conductance is significantly enhanced
at each resonant mode, forming a quantized feature as frequency increases. These properties demonstrate the
possibility of manipulating phonon propagation and thermal conductance in phononic bandgap materials and
may have potential applications in designing filter and waveguide for acoustic waves.
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I. INTRODUCTION

The concept of electronic localization was initially pro-
posed by Anderson in 1958 in dealing with electronic prob-
lem in one-dimensional �1D� disordered systems.1 Since
then, some interesting issues have been added into the local-
ization problem. First, localization is found to be a common
feature of any waves transporting in a disordered structure. It
may exist in acoustic waves2 and optical waves3 in addition
to the electron system. Second, localization of wave appears
not only in disordered systems, but also in deterministic ape-
riodic systems, such as quasiperiodic structure,4 incommen-
surate Aubry-Andre system,5 and deterministic aperiodic
Rudin-Shapiro system.6 Third, localization demonstrates po-
tential applications. For example, for last two decades, ex-
tensive studies have been carried out in photonic
localization7 and photonic band gaps in photonic crystals8,9

with the aim to develop optoelectronic devices for future
telecommunication.10,11 Propagation of photons is forbidden
in a photonic band gap �PBG�, which makes it possible to
manipulate photons by specific microstructure. Similarly,
phononic band gap, in which propagation of phonons is for-
bidden, has attracted much attention in very recent years.
Most of these studies focus on the elastic wave propagation
in PBG materials, i.e., phononic crystals and quasicrystals, in
order to control the propagation of acoustic waves and de-
velop the phononic devices.12–15

The localization-delocalization transition of electron was
first predicted by Dunlap et al. in 1D random-dimer �RD�
model in 1990.16 It was shown that extended states may exist
in the system with correlated disorder. Recently, electronic
delocalization has been experimentally demonstrated in RD
GaAs-AlGaAs supperlattice.17 Up to now, RD model has
been generalized to twined disordered system, random tri-
mer, random dimer-trimer, even random n-mer model.18

Physically, electronic delocalization in RD-like systems
originates from the internal structural symmetry of the impu-
rity cluster. This short-range correlated disorder can make
the localization length comparable to the length of the sys-
tem at the resonant energy.16,19 The RD-like model may also
explain the high conductivity in some polymers.19 Motivated

by the localization-delocalization transition of electrons, we
are interested in the property of phonons in PBG materials
with correlated disorder. In this paper, we report phononic
transport and its influence on thermal conductance in 1D
random n-mer systems. It is shown that phononic delocaliza-
tion indeed happens in random-dimer, random-trimer, and
even random n-mer systems. The phononic delocalization
induces the resonant transmission of acoustic waves in these
systems with correlated disorder. At resonant frequencies,
channels are opened for phonon transmission and heat trans-
port. Thereafter, thermal conductance is enhanced at each
resonant mode. Thermal conductance is finally quantized in
the infinite random n-mer systems.

This paper is organized as follows. In Sec. II, a theoretical
model based on elastic wave equation is presented. In Sec.
III, phonon transmission and frequency spectra are given as
an example in random-dimer �RD� system. The phononic
delocalization is discussed based on undecayed vibration at
the resonant mode. In Sec. IV, the RD model is generalized
to random-trimer, random-tetramer, and random n-mer
chains. Phonon transmission and thermal conductance are
derived in these systems. The delocalization of phonons is
discussed based on zero-Lyapunov exponent at the resonant
modes. In Sec. V, finite-temperature effect of thermal con-
ductivity is discussed. Finally, a summary is given in Sec.
VI.

II. THE THEORETICAL MODEL

Consider a harmonic chain that contains two types of at-
oms A and B with masses mA and mB, respectively. The at-
oms A and B are arranged sequentially and connected by
spring in the chain. The equation of atomic motion can be
expressed as

− mi�
2�i = ki+1,i��i+1 − �i� + ki,i−1��i−1 − �i� , �1�

where �i is the vibration displacement of the ith atom from
its equilibrium, mi is the mass of the ith atom, � is the
vibration frequency, and ki+1,i is the strength of the harmonic
coupling between neighbor atoms. In this paper, we focus on
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the on-site model where ki+1,i is set as a constant, i.e., ki+1,i
=k, and mi=mA �or mB� if atom A �or B� occupies the ith site
in the chain. Equation �1� can be expressed in a matrix form
as

��i+1

�i
� = Pi� �i

�i−1
� , �2�

with

Pi = �2 − mi�
2/k − 1

1 0
� , �3�

where Pi is the transfer matrix that correlates the vibration
displacements of adjacent sites �i and �i±1. Therefore,
atomic vibration in the whole chain is determined by a prod-
uct matrix, i.e., a global transfer matrix

G�N,�� = �i=1
N Pi � �g11 g12

g21 g22
� , �4�

where N is the number of atoms in the chain.
Let us define the trace of global transfer matrix G as TrG.

The allowed region of phonons in the frequency spectrum
satisfies

�1

2
TrG� � 1. �5�

Using unitary condition det�G�=1, we can obtain the trans-
mission coefficient of phonon through the whole chain. The
transmission coefficient t�N ,�� can be expressed as

t�N,�� =
4

�i,j=1

2
gij

2 + 2
. �6�

Based on Eqs. �3�–�6�, frequency spectrum and transmission
of phonons in the harmonic chain can be numerically ob-
tained.

It has been established that phononic transmission directly
determines the heat transport in a harmonic chain. In a mac-
roscopic system, thermal conductivity � is related to heat
transport J by Fourier’s law as �=J /�T, where �T is gradi-
ent of temperature in the system. Fourier’s law is well estab-
lished in the macroscopic system, but remains ambiguous on
the microscopic scale. Yet it provides an adequate phenom-
enological description of heat transport in the system.20,14 In
a harmonic chain, Fourier’s law takes the form in the “glo-
bal” sense as21

� =
J

c�T
, �7�

where �T is the temperature difference between two heat
reservoirs connected by the chain, and c is a factor measur-
ing the time interval between collisions in the reservoirs and
is much smaller than unity. Thermal conductivity � is con-
tributed by different modes of energy transport, i.e.,

� = �
	

�
	,1
−2 + 
	,N

−2 �−1, �8�

where 
	,n=	mnU	,n, U	,1 and U	,N are amplitudes of the 	th
mode at both ends of the chain, respectively. Obviously, ther-
mal conductivity is related to the transmission coefficient of
each mode and the vibration amplitude of atom at the ends of
the chain.

III. THE CASE OF RANDOM-DIMER (RD)

Now we consider a random-dimer �RD� chain, where
atom A and paired atoms BB are randomly assigned in a
chain as

A . . . A
X1

BB . . . BB
Y1

A . . . A
X2

BB . . . BB
Y2

. . . A . . . A
Xi

BB . . . BB
Yi

. . . A . . . A
Xm

BB . . . BB
Ym

. �9�

Xj in Eq. �9� is the number of atom A in the jth cluster of A,
which is random. Y j =2Zj is the number of atom B in the
jth cluster of B, which is even because atom B exists in
pairs in the RD chain. According to Eqs. �3�–�6�, frequency
spectrum and transmission coefficient of phonons can be
numerically calculated in the RD chain. In the calculation,
the masses of atom A and B are set as mA=1 and mB=2,
respectively, the strength of harmonic coupling between
neighboring atoms is set as ki+1,i=k=2. Figures 1�a� and 1�b�
show, respectively, the phononic transmission and the
frequency spectrum in the RD chain. The nonzero transmis-
sion coefficient �shown in Fig. 1�a�� corresponds to the al-
lowed “band” of phonons 
shown in Fig. 1�b��; while zero

transmission corresponds to the forbidden zone, i.e., the
phononic bandgap. It is well known that in a random chain,
phonon cannot propagate in high-frequency region 
as shown
in Fig. 1�c��. By comparing to Figs. 1�b� and 1�c�, it is ob-
vious that a new phononic “band” appears in frequency spec-
trum of the random-dimer �RD� chain. Actually, this new
band will be reduced to be a single mode in an infinite RD
chain. For a finite RD chain, however, there exist multiple
extended states in this frequency zone. Therefore, the new
band appears in the frequency spectrum. This feature indi-
cates that the localization-delocalization transition of
phonons may take place at specific frequencies in a RD
chain.
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Actually in RD case, the global transfer matrix can be
rewritten as

G�N,�� = �PA�X1�PB�Y1�PA�X2�PB�Y2
¯

�PA�Xi�PB�Yi
¯ �PA�Xm�PB�Ym. �10�

Here PA �or PB� is the matrix Pi in Eq. �3� when mi equals to
mA �or mB�, and Yi=2Zi �i=1,2 , . . . ,n and Zj is an integer�.
According to the matrices theory, the qth power of 2�2
unimodular matrix PB can be simplified as22

�PB�q = cq−1���PB − cq−2I , �11�

where

� � 1
2Tr�PB� = 1

2 �2 − mB�2/k� . �12�

I is the unit matrix, and cq is the qth Chebyshev polynomial
of the second order. If ����1, cq can be expressed as

cq = sin�q + 1�/sin  � = arccos �� . �13�

For q�2, if

� = �p = cos� p

q
��, p = 1,2, ¯ ,q − 1, �14�

we obtain cq−1��p�=0 and cq−2��p�= �−1�p+1. In this case, Eq.
�11� turns to

�PB�q = �− 1�pI, p = 1,2, ¯ ,q − 1. �15�

Because atom B appears in pairs in the RD chain, we have

�PB�Yj = 
�PB�2�Zj . �16�

Based on the above matrix theory, we can simplify the sec-
ond power of 2�2 unimodular matrix PB, i.e., �PB�2 in the
globe matrix. It follows that when

�2 = �RD
2 = 2k/mB, �17�

the matrix �PB�Yj satisfies

�PB�Yj = 
�PB�2�Zj = �− 1�ZjI . �18�

Therefore, global transfer matrix becomes

G�N,�� = �PA��iXi or − �PA��iXi �19�

Physically, once the frequency of phonon satisfies Eq. �17�,
the phonon can propagate through the whole RD chain.
Meanwhile the behavior of phonon in the RD chain is similar
to that in a homogeneous atom chain of atom A. From this
point of view, localization-delocalization transition of
phonons indeed takes place at the resonant frequency given
by Eq. �17�.

In order to demonstrate localization-delocalization transi-
tion of phonons in a RD chain, spatial distribution of vibra-
tion amplitudes is obtained by using triangular matrix.23 Fig-
ure 2 illustrates the vibration amplitude of atom at each site
of a RD chain. It turns out that when phonon possesses a
frequency close to �RD=	2k /mB, the vibration amplitude is
extendedly distributed in RD chain and vibration propagates
through the whole RD chain without decay 
as shown in
Figs. 2�a� and 2�b��. Figure 2 also provides critical amplitude
distributions 
as shown in Figs. 2�c� and 2�d�� and localized
amplitude distributions 
as shown in Figs. 2�e� and 2�f��
when the frequency of phonon deviates from the resonant
frequency �RD. In those cases, vibration cannot propagate in
the whole chain 
as indicated in Figs. 2�c� and 2�f��. There-
fore, at the resonant frequency �RD, the localization-
delocalization transition of phonons occurs indeed in the RD
chain.

Delocalization of phonons inevitably affects the thermal
conductivity in the RD chain. Figure 3 illustrates thermal
conductivity as a function of frequency through a random
chain and a random-dimer �RD� chain, respectively. Compar-
ing to the thermal conductivity in a random chain 
shown in
Fig. 3�a��, an enhancement of thermal conductance around
resonant frequency �RD=	2k /mB in RD chain 
shown in
Fig. 3�b�� can be identified. According to Eq. �8�, thermal
conductivity relates to the vibration state of atoms. Actually,
only the extended state contributes to the heat transfer. In the
RD case, localization-delocalization transition of phonons
occurs at the resonant frequency, around which the extended
state appears in the chain 
as shown in Figs. 2�a� and 2�b��.
As a result, thermal conductance is enhanced at the zone of
resonance. According to Eqs. �1�–�8�, enhancement of � can
be estimated as

�� = �
�RD−��/2

�RD+��/2 t2���
t2��� + 1

U1
2���d� 

1

2
U1

2��RD� · �� ,

where �� is the zone of resonance, U1��RD� is the amplitude
of the first atom in the chain at resonant frequency and

FIG. 1. �a� The transmission coefficient in a random-dimer �RD�
chain. �b�The frequency spectrum for the same RD chain. �c� The
transmission coefficient in a random chain. Here, mA=1, mB=2,
kn+1,n=k=2, and the total number of atoms N=1550 in each chain.
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m1=mN=1 is held. �Obviously, ��=���−�RD� in an infinite
RD chain�. Therefore, adjacent to the resonant frequency, a
new channel is opened for phonon transmission and heat
transfer.

IV. THE CASES OF RANDOM n-MER

To generalize the RD model, we construct random n-mer
�RN� model, where atom A and atoms B…B �the number of
atom B is n� are randomly assigned in the chain. The RN
model can be described as Eq. �9�, where Xj �or Y j� is the
number of atom A �or B� in the jth cluster of A �or B�.

Obviously, Y j =2Zj in the random-dimer model, Y j =3Zj in
the random-trimer model, and in general Y j =nZj in the ran-
dom n-mer �RN� model, respectively. Here Zj is an integer.
According to the matrix theory shown in Eqs. �10�–�15�,
localization-delocalization transition of phonons takes place
in RN chain at resonant frequencies

�R
2�n� =

2k

mB
�1 − cos

g�

n
� , �20�

where g=1,2 , . . . ,n−1. For example, there are two resonant
frequencies in the random-trimer chain, i.e., �R

2 =k /mB and
�R

2 =3k /mB. There are three resonant frequencies in the
random-tetramer chain, i.e., �R

2 = �2−	2�k /mB, �R
2 =2k /mB,

and �R
2 = �2+	2�k /mB, respectively. For random 5-mer

chain, four resonant frequencies exist, which are
�R

2 = �3−	5�k /2mB, �R
2 = �5−	5�k /2mB, �R

2 = �3+	5�k /2mB,
and �R

2 = �5+	5�k /2mB, respectively. At these resonant fre-
quencies, vibration of atoms can propagate through the
whole RN chain and new channels are opened for phonon
transmission and heat transport.

Figure 4 presents phononic transmission and thermal con-
ductivity as a function of frequency through several RN
chains. Because of delocalization of phonon at resonant fre-
quencies, n−1 resonant peaks appear in the transmission
spectrum of the RN chain 
as shown in Figs. 4�a�–4�d��. For
instance, there is one transmission peak in the spectra of a
random-dimer chain, two peaks in a random-trimer chain,
three peaks in a random 4-mer chain, and four peaks in a
random 5-mer chain, respectively. As discussed in Sec. III,
adjacent to the resonant frequency, new channel is opened
for phonon transmission and heat transport. Therefore, ther-
mal conductivity has an enhancement around each resonant
frequency 
as shown in Figs. 4�a�–4�d��. The enhancement of
thermal conductivity can be estimated. The thermal conduc-
tivity comes from the contribution of different modes, at
which phonon can propagate through the whole chain. Ac-
cording to Eq. �8�, contribution of each extended state can be
expressed as �	= �
	,1

−2 +
	,N
−2 �−1= 
t2 / �t2+1��U	,1

2 �here we as-
sume m1=mN=1�. If there are Ns extended states, thermal

FIG. 2. The vibration ampli-
tude of atom at each spatial site in
a RD chain with N=1550. �a� and
�b� the extended distributions
around the resonant frequency
�RD=	2k /mB=	2; �c� and �d� the
amplitude distributions between
the extended and the localized
states away from the resonant fre-
quency �RD; �e� and �f� the local-
ized distributions away from the
resonant frequency �RD. Here,
mA=1, mB=2, and kn+1,n=k=2.

FIG. 3. The thermal conductivity � as a function of frequency in
different structures: �a� a random chain, and �b� a random-dimer
chain. Here, mA=1, mB=2, kn+1,n=k=2, and the total number of
atoms N=1550 for each chain.
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conductivity is approximately expressed as �Ns��	�,
where ��	� is the average of �	. Since the number of ex-
tended states around each resonant frequency does not
change significantly, the increment of thermal conductance
deviate only slightly at each resonant mode. Consequently,
thermal conductivity seems “quantized” in the finite RN
chain, as indicated in Figs. 4�a�–4�d�. The “quantization” of
thermal conductivity originates from multiple delocalization
of phonons and multiple resonant modes in a random n-mer
chain. Each delocalization of phonons opens a channel for
phononic transport. Hence thermal conductivity enhances at
each corresponding resonant frequency. As a result, thermal
conductivity increases step by step as the frequency in-
creases.

In an infinite RN chain, localization-delocalization transi-
tions of phonons take place exactly at n−1 resonant frequen-
cies shown in Eq. �20�. The extended state appears only at
those resonant frequencies, and perfect transmission is
achieved at corresponding frequencies. Therefore, thermal
conductivity enhances at the resonant frequency, and its in-
crement is exactly a quantum of thermal conductivity,
�q= 1

2U1
2��R�, where U1

2��R� is the amplitude of the first atom
of the chain at the resonant frequency. By increasing fre-
quency, thermal conductivity increases exactly at n−1 reso-
nant frequencies. Finally, quantization of thermal conductiv-
ity is demonstrated in the infinite RN chain, which originates
from multiple delocalization of phonons in the system.

Actually, delocalization of phonons in RN system can also
be characterized by zero-Lyapunov exponent at the resonant
mode. It is known that one important parameter to character-
ize the physical nature of random matrices is Lyapunov
coefficient.24 In a harmonic chain, Lyapunov coefficient can
be expressed as14

� =
1

N
ln�g11

2 + g12
2 + g21

2 + g22
2 � , �21�

where gij �i , j=1,2� is the element of the global matrix
G�N ,��. According to the Furstenberg theorem,25 Lyapunov
coefficient exists and converges to its mean value for suffi-
ciently long chains. In fact, in a vibrational system,
Lyapunov coefficient is inverse to the localization length of
phonons. Once the length of the sample is sufficiently long,
zero Lyapunov coefficient corresponds to delocalized states
with infinite localized length. Therefore, based on the
Lyapunov coefficient, we can obtain the overall behavior of
the phonons, i.e., we can know whether they are localized or
delocalized at specific frequencies in the system. Figure 5
shows Lyapunov coefficients as a function of phononic fre-
quency in several RN chains. It can be seen that around
resonant frequencies in each chain, Lyapunov coefficient ap-
proaches zero even though fluctuation exists 
as shown in
Figs. 5�a�–5�d��. Actually, fluctuation can be eliminated
when the length of the chain increases. Because the zero
Lyapunov coefficient appears at the resonant frequencies, the
localized length of phonons is infinite at these frequencies.
At these modes, atomic vibration can not “feel” defects in
the chain structure, and vibration can propagate through the
chain without decay. Therefore, delocalization of phonons
occurs at each resonant mode in RN chain, and total number
of resonant modes in the system is n−1. Each delocalization
of phonons opens a channel for phononic transport, which
eventually leads to quantized thermal conductivity.

From the above analysis, it is possible to manipulate pho-
non propagation by introducing random n-mer model. By
designing a random n-mer chain, we can select phonons of
specific frequencies and obtain high transmission at desired

FIG. 4. The transmission coefficient and the thermal conductivity � as a function of frequency in several random n-mer chains with
mA=1, mB=2, and k=2. �a� A random-dimer �RD� chain with N=1550, where the resonant frequency satisfies �RD

2 =2; �b� A random-trimer
chain with N=2077, where the resonant frequencies follow �R

2 =1 and 3, respectively; �c� A random-tetramer chain with N=2604, where the
resonant frequencies follow �R

2 =2−	2, 2 and 2+	2, respectively; �d� A random 5-mer chain with N=3131, where the resonant frequencies
follow �R

2 = �3−	5� /2, �5−	5� /2, �3+	5� /2, and �5+	5� /2, respectively. Here, mA=1, mB=2, and kn+1,n=k=2.
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frequencies. In this way we can tune quantized thermal con-
ductance in the system. This feature implies potential appli-
cation in designing filters of acoustic waves and developing
phononic devices.

V. TEMPERATURE-DEPENDENT THERMAL
CONDUCTIVITY

It is interesting to discuss the finite-temperature effect of
thermal conductivity. Consider a chain where both ends con-
necting to thermal reservoir of free phonon gas. At finite
temperature, free phonon gas follows Bose-Einstein distribu-
tion in thermal reservoir. Heat flow equals to the energy
transmitted per unit time from the thermal reservoir to the
end atom, which can expressed as26

J = ��kBT − mava
2� , �22�

where T is temperature of the thermal reservoir, kB is the
Boltzmann constant, ma is the mass of the end atom, va

2 is the
average velocity of the end atom, and � is a coefficient re-
lated to the damping force. va

2 can be expressed as
va

2=kB /ma�	
�T1U	,1
2 +TNU	,N

2 � / �U	,1
2 +U	,N

2 ��U	,a
2 , where

U	,a is the vibration amplitude of the end atom at the 	th
mode. Consider an atomic chain with two ends connecting to
the thermal reservoirs with temperature T1 and TN, respec-
tively. The heat flow in the chain satisfies

J = �kB�T1 − TN��
	

U	,1
2 U	,N

2

U	,1
2 + U	,N

2 . �23�

We suggest that in a harmonic RN chain only those modes
with high transmission coefficient contribute to the heat
transport, and the amplitude of end atom satisfies U	,v

2

=cfB�Tv ,	�. Here, v=1 or N, fB�T ,	� is the Bose-Einstein
distribution. For an infinite RN chain, we have

J =
1

2
�kB�

n

�T1fB
T1,�R�n�� − TNfB
TN,�R�n��� , �24�

where the sum covers all resonant modes in an infinite RN
chain and transmission coefficient t
N ,�R�n��=1 at each
resonant mode. Finally, thermal conductivity takes the form
of

� = lim
�T→0

J

�T
=

1

2
�kB�

n

T
dfB
T,�R�n��

dT
� �

n

�q. �25�

Therefore, the quantum of the thermal conductivity is ex-
pressed as �q= 1

2�kBTdfB
T ,�R�n�� /dT. Obviously, the quan-
tum of the thermal conductivity is temperature dependent.

VI. SUMMARY

To summarize, we theoretically investigated the frequency
spectrum, the phononic transmission and the thermal con-
ductivity of a random n-mer �n=2,3 ,4 , . . . �. chain. Multiple
resonant transmissions are observed, which originates from
delocalization of phonons in the correlated disorder system.
At each resonant mode, zero-Lyapunov exponent and unde-
cayed vibration of atoms have been found through the whole
chain. Meanwhile, channels are opened for phonon transmis-
sion and heat transfer. As a result, thermal conductance en-
hances significantly at each resonant mode, forming a quan-
tized feature as the frequency increases. The phonon
behavior presented here provides a possible way to manipu-
late phonon propagation and thermal conductance in
phononic bandgap materials, and may have potential appli-
cations in designing filters and waveguide of acoustic waves.
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2 =1 and
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