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We report here the theoretical studies on electronic delocalization and resonant transmission in
symmetric metallic nanowires �SMNs�. Resonant transmissions, which are characterized by multiple
perfect transmission peaks, have been found in the electronic band gap. The resonant energy and the
number of modes of resonant transmission therein can be manipulated, and the quality factor of the
perfect transmission peak can be exponentially increased. We suggest that the resonant transmission
originates from the electronic delocalization in SMNs, which is characterized by the extended wave
function of electrons around the resonant energy. These features open a unique way to control
quantum transport in nanodevices. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2357875�

With the development of microfabrication technology,
much progress has been achieved in the miniaturization of
electronic devices.1–4 Nowadays, the feature size of micro-
electronics devices may reach several tens of nanometers. It
becomes very important to manipulate the electron transport
on the nanometer scale, where semiclassical transport theory
is invalid and the effect of quantum interference has to be
taken into account. The electronic behavior in nanostructures
can be described by the Landauer-Büttiker theory.5–7 On the
other hand, the localization-delocalization transition of elec-
trons was first predicted by Dunlap et al. in one-dimensional
�1D� random-dimer �RD� model in 1990.8 It was shown that
extended states may exist in a system with correlated disor-
der. Recently electronic delocalization has been experimen-
tally demonstrated in RD GaAs–AlGaAs supperlattice.9 Up
to now, RD model has been generalized to twined disordered
system, random trimer, random dimer-trimer, and even ran-
dom n-mer models.10,11 Physically, electronic delocalization
in RD-like systems originates from the internal structural
symmetry �or inverse symmetry� of the impurity cluster.
Very recently, the electronic delocalization has also been
found in a set of metallic clusters randomly attached to an
adsorbed nanowire.12 These investigations may explain the
high conductivity in the system. In this letter we focus on the
electronic delocalization and resonant transmission in a sym-
metric metallic nanowire �SMN� constructed as S�m ,n�
= �BA�mCn�AB�m, where A, B, and C are three types of at-
oms, and m and n are the repeating numbers of the units.

Now we consider the electron behavior in a host mon-
atomic chain, where a cluster of SMN is inserted. Assuming
the host chain is composed of atom A only, in the on-site
model, atoms A, B, and C have the energies of �a, �b, and �c,
respectively. The nearest-hopping integral is taken as the
same constant V. With tight-binding approximation, the
Schrödinger equation for a spinless electron in 1D chain can
be written in the matrix form of

�� j+1

� j
� = pj� � j

� j−1
� , �1�

with

pj = ��E − � j�/V − 1

1 0
� , �2�

where � j depends on the atom which occupies the jth site, pj
is the transfer matrix that correlates the adjacent site ampli-
tudes � j and � j±1. The whole chain contains three parts: the
SMN cluster, its left part, and its right part. The amplitudes
of wave functions can be described as � j =eikj +re−ikj for the
left part of the SMN cluster and � j = teikj for the right part of
the SMN cluster. Here r and t are the reflection and the
transmission amplitudes of the SMN cluster, respectively.

If the cluster of SMN occupies the sites from h+1 to h
+ l, the total transfer matrix across the SMN cluster can be

expressed as P̄= ph+l−1 . ph+l−2 . . . ph. The correlation between
the wave amplitudes at both ends of the SMN cluster can be
described as

� �h+l

�h+l−1
� = P̄� �h

�h−1
� . �3�

For a given P̄, the reflection amplitude r and transmission
amplitude t can be written as

r = − �2h �T�P̄�

�T�P̄�*
, t =

�−l2i sin k

�T�P̄�*
, �4�

where

� = eik, � = � 0 1

− 1 0
�, � = ��

1
� ,

and �T is the transpose of �. According to Eq. �4�, it is
obvious that the reflection and transmission coefficients are

determined by the total transfer matrix P̄. Moreover, the re-
flection coefficient will be zero in the following scenarios: �i�
P̄ is proportional to the unit matrix, �ii� P̄ is proportional to
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the promotion matrix for the periodic system, and �iii� P̄ is
the linear combination of unit matrix and promotion matrix
for the periodic system.13

It is necessary to pay attention to the total transfer matrix

through the SMN cluster, i.e., P̄. In the SMN cluster, the
atoms are arranged as �BA�mCn�AB�m. Define PL, PN, and PR

as the transfer matrices across the sites AB, the central atoms
Cn, and the sites BA, respectively. It follows that

PLPNPR = �u v

w x
��an+1 − an

an − an−1
�� u − w

− v x
�

= �G1 − H1

H1 − F1
� , �5�

where v=−�E−�b� /V, w= �E−�a� /V, u=−vw−1, x=−1, and
an= ��E−�c� /V�an−1−an−2 with a0=0 and a1=1. The total
transfer matrix of the SMN with the structure of S�m ,n� can
be obtained as follows:

P̄ = �Gm − Hm

Hm − Fm
� . �6�

Here, Gm=u2Gm−1+2uvHm−1+v2Fm−1, Hm=uwGm−1+ �ux
+vw�Hm−1+vxFm−1, and Fm=w2Gm−1+2wxHm−1+x2Fm−1.

The matrix P̄ in Eq. �6� can be further simplified in the
following cases: �i� In the case of

Hm = 0 and Gm = − Fm, �7�

the matrix P̄ of the SMN cluster will be a unit matrix. �ii� In

the case of Hm�0, the total transfer matrix P̄ has the form

P̄ = Hm��Gm + Fm�/Hm − 1

1 0
� − Fm�1 0

0 1
� . �8�

It is obvious that if

�Gm + Fm�/Hm = �E − �a�/V , �9�

the total matrix P̄ of the SMN will be a linear combination of
both a unit matrix and a promotion matrix for the periodic
system. Thereafter, if an electron possesses the energy satis-
fying Eq. �7� or �9�, its reflection coefficient will be zero and
electrons will transmit perfectly through the SMN cluster.
We can conclude that the resonant transmission can happen
in the SMN at the energies satisfying Eq. �7� or �9�.

Based on the above analysis, we can carry out numerical
calculation of electron transport. Figure 1 shows the trans-
mission coefficient T as a function of electron energy in the
SMN of S�5,n�. There are several interesting features. First,
due to the substructures of �BA�m and �AB�m in SMN, there is
an electronic band gap. Second, there indeed exist perfect
transmission peaks in the band gap. Third, the central part Cn

determines the peak number and the energy of perfect trans-
mission peaks in the band gap. We find that in the case of
even n, there are odd peaks of perfect transmission in the
band gap. Whereas in the case of odd n, an even number of
perfect transmission peaks appear in the band gap. For ex-
ample, when we select n=2,12,22,32, there exist 2i+1�i
=0,1 ,2 ,3� peaks within the electronic band gap �as shown
in Figs. 1�a�–1�d��. And when the SMN has n=5,15,25,35,
correspondingly 2i�i=1,2 ,3 ,4� peaks occur in the band gap
in Figs. 1�e�–1�h�. Therefore, by increasing n, more and
more perfect transmission peaks appear in the band gap of

the SMN. This feature originates from the fact that the re-
flected wave at each interface has changed its phase when n
increases. Once the phase difference of the reflected waves
becomes an integer multiple of �, the total reflected wave at
the interface reaches zero due to interference. As a result,
more transmission peaks lie in the band gap by increasing
the central part Cn in the SMN.

If we define the energy deviation of the nearest peak
from the on-site energy of C site as �E, �E will depend on
the structural parameter of the SMN. Figure 2�a� shows the
relation between �E and n in the SMN with m=4, 5, and 8,
respectively. Obviously, the nearest peak to �C=0 gradually
approaches the center of the band gap as n increases. It is
interesting to note that �E shows a significant difference for
odd n and even n in Fig. 2�a�. The main reason is that there
is a transmission peak around E=�C in the SMN with even n,
but no such peak in the SMN for odd n �as shown in Fig. 1�.
In order to explain this feature, we consider a case that an
electron with energy of E=�C transports through the SMN,
where m is supposed to be infinite. Obviously, the central
part Cn acts as a well of potential energy, where the width is
related to n. At the boundary of the well, there are multiple

FIG. 1. Transmission coefficient T as a function of the electron energy for
the SMN of S�5,n�, where �a=−�b=0.5, �c=0, and V=1.0. For even n, �a�
n=2, �b� n=12, �c� n=22, and �d� n=32, respectively. For odd n, �e� n=5,
�f� n=15, �g� n=25, and �h� n=35, respectively.

FIG. 2. �a� Relation between �E and n in the SMN �BA�mCn�AB�m with
m=4, 5, and 8, respectively. �E is the energy deviation of the nearest peak
from �C=0. �b� The relation between the quality factor Q of the perfect
transmission peaks in the band gap and m in the SMN with S�m ,12�. There
are three perfect transmission peaks in the band gap of S�m ,12� as shown in
Fig. 1�b�. These three peaks are located at the electron energies EL

�−0.3520, EC�0.030 40, and ER�0.4082, respectively.
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transmissions and reflections. For transmission waves, the
phase difference is n� at the boundary of the well. Thereaf-
ter, if n is odd, the total transmission wave reaches zero due
to the interference and there is no transmission peak at E
=�C. But if n is even, the total transmission wave is en-
hanced due to the interference, which is also in agreement
with the result based on the transfer-matrix method. The
transfer matrix across the central part is PN= �−1�n/2I in the
case of E=�C �here I is a unit matrix�. The electron will
transmit perfectly through the central part Cn. Moreover, this
wave has a resonant tunneling through the left and right sub-
structures of �BA�m and �AB�m. Therefore, there is indeed a
transmission peak at E=�C in the case of even n.

On the other hand, the quality factor Q of perfect trans-
mission peak is determined by parameter m in the SMN. By
increasing m, the number of peaks in the band gap does not
change and the peak position only shifts slightly �as shown
in Fig. 2�a��. However, increasing m may lead to a significant
change of the quality factor Q of the peak, which is defined
as Q=E /�E, and E is the energy of the peak and �E is the
half-width of the peak, respectively. Figure 2�b� illustrates
the relation between the quality factor Q of the peak in the
electronic band gap and the number of m in the SMN for
S�m ,12�. Obviously, the quality factor of the peak increases
exponentially by increasing m in the SMN. In some sense,
the mode number, the mode energy, and the quality factor Q
of the resonant transmissions are related to the structure of
the system, which can be described with a “phase diagram.”

In order to understand the behavior of electrons in the
SMN clearly, the electronic wave function has been studied.
The wave function of electrons can be obtained by using the
triangular matrix.14 Figure 3 presents the wave functions in
the SMN with S�5,5� when the electron is close to or far
away from the resonant energies. As shown in Fig. 1�e�,
there are two resonant transmission peaks in the electronic
band gap of S�5,5�, and the resonant modes in the band gap
are at the energies with E1 and E2, respectively. It is shown
that the electronic wave function is almost extended when its
energy is close to the resonant energy E1 �as shown in Fig.

3�a�� or E2 �as shown in Fig. 3�b��. In other words, electron
with the energy of E1 or E2 can propagate through the whole
nanowire S�5,5�. Meanwhile, a localized wave function can
be observed when the electronic energy is far away from the
resonant energy E1 or E2, as shown in Figs. 3�c� and 3�d�,
respectively. It is known that electrons with the energy of E1
or E2 cannot propagate in the periodic nanowires �AB�m or
�BA�m. Therefore, the electronic localization-delocalization
transition has indeed happened at the resonant energies E1
and E2 in the SMN of S�5,5�. It is the internal symmetry in
the SMN that leads to the electronic delocalization, and
eventually to the perfect transmission at the resonant energy.
We can control the resonant mode, the number of the mode,
and the quality factor of the mode in the nanowire by tuning
the structural parameter of the SMN. The perfect transmis-
sions with tunable mode and high Q can be obtained by
designing a suitable SMN in the system. One may build the
high-quality metallic nanowire experimentally by using
probes of scanning tunneling microscope3,15 or by the step
decoration on vicinal surfaces.16 Our investigation opens a
unique way to control electronic propagation in nanodevices.
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FIG. 3. Wave functions of the electron in the nanowire S�5,5�. The elec-
tronic states are almost extended when �a� E1�−0.285 371 35 and �b� E2

�0.383 400 33, respectively. The electronic states are localized when �c�
E3�0.014 571 411 and �d� E4�−0.019 991 903, respectively.
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