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A one-dimensional k-component Fibonacci structure, with k different intervals, is the natural
extension of the standard Fibonacci structure with two intervals. We prove that the structures with
k < 5 are quasiperiodic, and the projection method can be applied to deal with the pattern and
indexing problem of its x-ray-diffraction spectrum. For k > 5, the resulting structures are no longer
quasiperiodic, but they are still ordering. The analytically obtained results have been compared to
experimental results for Ta-Al three-component Fibonacci superlattice structures and to numerical

calculations.

I. INTRODUCTION

In recent years there has been an abundance of the-
oretical and experimental work in one-dimensional (1D)
quasiperiodic systems.!™8 From the theoretician’s point
of view, there is interest because although quasicrystals
are perfectly ordered, the Bloch theorem is inapplica-
ble to them since there is no translational symmetry.
This problem represents, in some respects, an interme-
diate case between periodic and disodered solids. For
the 1D case, known as the Fibonacci chain, it has been
proved that the energy spectrum is a singular continuous
Cantor set, i.e., neither continuous nor pointlike, and the
eigenstates are believed to be critical, i.e., neither local-
ized nor extended. On the experimental side, advances
in thin film techniques have made it possible to prepare
artificially 1D quasiperiodic superlattices. Because the
fabrication of quasiperiodic superlattices is easier than
the growth of large single-phase quasicrystals, and due to
the fact that the characteristic intervals and the growth
sequence can be intentionally chosen, quasiperiodic su-
perlattices play a very important role in the study of the
physical properties of quasicrystals.

In 1985, Merlin et al. reported the first realization of
Fibonacci superlattices.> The Fibonacci sequence is ob-
tained by repeated application of the substitution rules
A — AB and B — A, in which the ratio of the two
incommensurate intervals A and B, d4/dp, is equal to
the golden mean 7 = (v/5 + 1)/2. The x-ray diffrac-
tion and Raman spectra presented the self-similarity.
Since then, many experiments on quasiperiodic super-
lattices have been reported.®~¢ However, to our knowl-
edge, most of these have been based on the Fibonacci
sequence and only very few experiments have been per-
formed on non-Fibonacci structures. For example, Thue-
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Morse superlattices,’® which can be generated by the
substitution rule A — AB and B — BA, belong to
the class of structures based on automatic sequences.
Their behavior is, in some respects, intermediate between
quasiperiodicity and randomness. Birch et al.!! reported
a class of quasiperiodic superlattice structures which can
be generated by the inflation rule A — A™B and B — A.
All of the above-mentioned structures include only two
intervals of length d4 and dp.

In the present work, the standard Fibonacci structure
with two intervals has been generalized to k-component
Fibonacci structure with k intervals. This structure has
many advantages: it can be periodic (k = 1), quasiperi-
odic (k < 5), or only ordering (k > 5).

II. SUBSTITUTION RULES AND ALGEBRAIC
NUMBER THEORY

Let us suppose that we have a set of k elements

(A1, A2,...,Ag). Let T be substitution,

TAy = A1 Ax, TAg = Ag—1,...,TA;

= A'i—ly . ,TA2 = Al.

Let C,, =T"A;. Thus

Co = Ay,

C1 = A Ay,

Cy = AjApAi_q,

Cr = A1AgAg_1... A3A2,

and in general C,, = C,,_1 + Cp,_x. Let A; be a tile
(interval) of length d;. Then the k-component Fibonacci
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tiling is obtained as lim,_,o, C,, by choosing the origin
appropriately.

A question arises of whether the tilings obtained
above are quasiperiodic for all k’s. The Bombier-
Taylor theorem gives a sufficient condition for absence
of quasiperiodicity:'®!3 if the characteristic polynomial
of the substitution rule has only one root Ao of abso-
lute value greater than one, i.e., Ao is a Pisot number,
then the tiling is quasiperiodic and can be generated by
a cut-and-project method. Otherwise, the tiling is not

quasiperiodic.
In our case, the substitution matrix M of T is
10 o ---1
10 o --- 0
M=1|01 o --- 0 . (1)
0 --- 0 10

kxk
Then the characteristic polynomial of M is

Pe(A) = A — k-1 1, (2)

The set of all distinct eigenvalues of M is called the spec-
trum of M and is denoted by o (M),

p(M) = max ;] (3
is called the spectral radius of M. We have the following
results (the proofs are given in the Appendix).

(1) Each eigenvalue of M is simple.

(2) For k > 2 there is always a unique positive eigen-
value \g = p(M) € o(M) and 1 < Ag < 2. Xp is the
leading eigenvalue of M.

(3) o(M) C R, where R is the region enclosed by the
curves ABCDEOA and AHMGNFEQO; A in Fig. 1.

(4) If A\j € o(M) lies on the curve ABCDEFGMA in
Fig. 1, then \; = e**3. In addition \; = e*'% is the
only pair of eigenvalues with modulus equal to one if and
only if £ =5 (mod 6) (namely, k = 5,11,17,...).

(5) If k is odd, then )¢ is the unique real eigenvalue of
M. If k is even, then M has exactly two real eigenvalues
Ao, A1, where A < 0, 1/)\0 < l/\1| <1

(6) The number of pairs of nonreal roots of modulus
greater than 1 is [k/6], where [.] denotes the integer part.

From these results it follows that \g is a Pisot num-
ber for 2 < k < 5, and that the corresponding tiling is
quasiperiodic; for £ > 5, A\ is not a Pisot number and
the tiling is no longer quasiperiodic, but it is still order-
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FIG. 1. The region of the spectrum of M.

ing since substitution rules imply ordering; for & = 1, the
tiling is periodic.

III. PROJECTION METHOD AND
DIFFRACTION SPECTRUM

A low-dimensional quasiperiodic structure may be con-
sidered as the projection of high-dimensional periodic
structure.!1% Therefore , when k < 5, the k-component
Fibonacci lattice can be obtaind by a projection method.
For this reason, supposing that | A;|, represents the num-

ber of A; in C’T(lk), a set of ration is defined from this se-

quence, 7; = limy, o0 (|Ai|n/|A1ln). The set of n; satisfies
the following equation:

e+ =1,
1277k="7k177k—1="'=7733772- (4)

It is easy to prove that all these ratios are irrational num-
bers between zero and one, except 71 = 1. 7 is just
the reciprocal of the leading eigenvalue of the matrix M,
Nk = 1/A¢. For example, when k = 3,

ns = V/1/2+1/2/31727 + {/1/2 — 1/2/31/27,

na = —2/3+ {/29/54 + 1/2:/31/27

+ {/29/54 —1/24/31/27, (5)
1.

m=

Now, consider a K-dimensional regular periodic lat-
tice with unit lattice vector (e1,ea,...,ex). Let X :
{z1,z2,...,zk} be a coordinate system constructed from
any lattice point O (which will be the origin) and a ba-
sis {e1,ez,...,ex}. Let X' : {z},z5,...,z}} be another
orthogonal coordinate system constructed from O with
a basis {e},e5,...,e,}. The two coordinate systems X
and X’ are related by X = AX', i.e.,

st ai1 Q21 - Akl T
T2 a2 Q22 - Qg2 fE'g
= s .. : : J (6)
Tk a1k G2k ‘' Gkk x,
where a;; = €} -e; (3,5 = 1,2,...,k) are the orienta-

tion cosines of axis X]. If we choose the axis X, as the
projecting line, its orientation cosines satisfy

Qg1 :Gk2 - tagg =1:m2 1 -1 Mg, )

then, there will be no other points on this line since all
the n; (except n; ) are not rational. Take the set of points
which lie within a certain distance, w, from the hyper-
surface and project them onto the line. The projected
set of points will clearly be arranged aperiodically.

The k-dimensional periodic lattice of points may be
represented by the function
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U(z1,22,...,2k) = (1/2m)% Y 6(x1 — n1)6(z2 — n2) - - 6(zk — ni), (8)
where the sum is all the integers n; (i =1,2,...,k), and the projection function is
) / 1 iz <fw (6=1,2,...,k—1),
R(21,23, -1 Tpn) = {0 othezrwise, (9)
thus, the function
Q) = /---/R(m’l,x’z,...,xfc_l)U(x'l,:v’z,...,x;c)dx’ld:z:’z...dx}c_l (10)
where U(z},zh, ..., 2}) = U aax}, Y iz}, ..., > a;xx;) is the sum of points of the k-component Fibonacci lattice.

If a string of atoms were placed at these lattice points, the intensity of the diffraction pattern is related simply to the
Fourier transform of Q(z},). Using S(p1,p2,...,pk—1) and M(z}, P1,p2,...,pk—1) as the transformation of R and U,
respectively, and according to the convolution law, we have

Q(z%) =/”'/S(Pl,pz,.--,pk—l)M(xL,px,pz,---,pk—1)dp1dpz---dpk_1- (11)
The Fourier transformation F(g) of Q(z}) is
F(q) =/---/S(_ph_P%--->—pk—1)V(va1;p2,"‘,pk—l)dpldp2"‘dpk—la (12)
where
V(g,p1,p2,---,Pk=1) = D 6[p1 — 27p1(n1,na, ..., mk)8[p2 — 27pa(n, ma, . )] -
X 6[pk—1 - 27Tk—1(n17 n2,... vnk)](s[q - QﬂQ(n17n27 cey nk)]v
k=1
S(p1,p2, - -, Pk-1) = | | 2w sin piw;/piw;.
i=1

Therefore, we have

F(q) = Z S[pl(nlvn2a ey nk)vp2(n17n27 v ank—l)a oo 7pk—1(n1,n2, e vnk—l)]é[q - q(n17n25 v vnk)]v (13)
[
where can be rewritten as
k
ny a2 - Gkl -
Ny Q2 - Ok2 q(nlan2$"',nk) =2nD 12”‘”7117 (18)
pl(nhnZa"'ank) = . : .. e (14) i=1
I : : where
Ng G2k ' Qkk k
D=> nd; (19)
aix M1 - Qg1 =1
pa(ni,na,...,nE) = a_m _n2 ak% , (15) and 7; (¢ runs from 1 to k) are integers, D is an aver-
- T : age lattice parameter. The Fourier transform of the k-
a1k Mg+ Okk (k < 5)component Fibonacci lattice consists of §-function
peaks at g(ni,n2,...,nk). The strongest peaks corre-

spond to p;w; = 0. It is easy to prove that the strongest
peaks are for

Zi; :; Z:; nying - ing=1:imge:- g, (20)
Pr-1(n1,n2,. .., k) = s .. B (16) this condition leads to the series of (ni,ne,...,nk)
a;k o nk' akk' which are the so-called general Fibonacci numbers
(@nsGn—k+1,An—k+2; - - - an—1). All of these {a;} belong
to the sequence described as a; = a;—1 + a;—x with
ail  Gg-1,1 M1 ay = ay = -+ = ag_1 = 0 and ar = 1. Then the
a12 - Gk-12 T2 strongest peaks satisfy
Q(n17n2,"' 7nk) = . . . I (17)
: : " : Q(Gn+k7an+1,- "1a‘n+k—1) = Q(an+k—11ana“"an+k—2)
A1k Qk—1k Nk +q(anaa‘n—k+la"'aa‘n—1)7

Considering Eqgs. (17) and |A4| = 1, ¢(n1,n2,...,nk) (21)
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which reflects the self-similarity of its diffraction spec-
trum.

IV. EXPERIMENT AND NUMERICAL
CACULATION

In order to test the above-mentioned results, a three-
component Fibonacci Ta/Al superlattice was grown epi-
taxially on glass substrates by dual-target magnetron
sputtering. The parameters of the structure were cho-
sen so that the Ta slabs, with the same thickness, were
separated by three different slabs of Al. In a typical
sample, the building blocks A;, Az, and A3 consisted of
(12.7 A Ta + 36.44 A Al), (12.7 A Ta + 9.89 A Al) and
(12.7 A Ta + 21.11 A Al), respectively. d2/d; and d3/d;
were approximately 72 and 73, respectively, the average
lattice parameter was D = dj + m2da + n3ds = 82.72 %
The sample consisted of 16 generations. The total thick-
ness was about 1.56 um. A more detailed description of
the sample preparation is given in Ref. 16.

X-ray scattering measurements were performed on the
sample. A 12 kW Rigaku rotating anode x-ray source
[a Cu anode in the high brilliance 0.2 x 2 mm? spot
mode and a symmetric graphite (002) monochromator]
was used. The scattering vector was nomal to the sur-
face.

Figures 2 and 3 show the 6-20 scan of x-ray diffraction
in the low and high angle regions, respectively. In the low
angle region, at least 14 satellite peaks were found. In the
high angle region, the main diffraction peak was found.
It corresponds to the reflection from the bce Ta(110) and
fce Al(111) planes, which have an equal interlayer spacing
of 0.2338 nm. On both sides of the main Bragg reflection,
many satellite peaks were found. All the satellites can be
indexed as [n1, ng, ng]. The experimental values of ¢ from
x-ray diffractions are in excellent agreement with above
calculated from Eq. (18). The self-similarity relation (21)
is satisfied.

Numerical calculations of x-ray-diffraction spectra
from k-component Fibonacci lattices have been carried
out for k = 3,5,6,7,8,9, and 277 to test the transition
between the quasiperiodic and the nonquasiperiodic re-
gion. We supposed a set of identical 2D atom planes
arranged in k-component Fibonacci sequence. The av-
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FIG. 2. The 6-26 scan of x-ray diffraction in the low angle
region for the 3C'F' Ta/Al superlattice.
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FIG. 3. The 0-26 scan of x-ray diffraction in the high angle

region for the 3C'F Ta/Al superlattice.

erage atomic scattering factor of each atom plane was
taken as one and the scattering vector was kept nomal
to the atom planes. With these assumptions the x-ray-
diffraction intensity is given by

m

2
1 + cos® 26 Z exp(i4ﬂ'zj' sin 0/)‘)7 (22)
j=1

x sin 6 sin 26

where z; is position of ith plane, and m is the total num-
ber of atom planes. In the case of k¥ = 3, our model
consists of 15 generations and a total thickness of 7000
A. The peaks can be indexed as [n1,ng,n3] (see Fig.
4). This result is the typical diffraction spectrum of a
quasiperiodic structure and it is in very good agreement
with the above discussion. For & = 5, we obtained a
similar result. In the cases of £k = 6,7,8,9, although
some peaks can be found in the diffraction spectra, those
peaks cannot be indexed by the projection method. As
k increases, the diffraction spectra get more and more
complex. For k = 277, ng77 = 0.985, d; = 106.6 A, and a
total thickness of 21.8 um or so, the simulated result is
very complex (see Fig. 5). Comparing with Fig. 4, one
can easily find that the self-similarity in this spectrum
has almost disappeared.
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FIG. 4. The simulation of x-ray-diffraction intensity (k =
3). Note that

i

q(an+3,an+1, an+2) = q(an+z, Qn, an+1) + Q(an,an—m am)-
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FIG. 5. The simulation of x-ray diffraction intensity (k =

277). The chaos-like spectrum is shown.

V. DISCUSSIONS

The 1D k-component Fibonacci structure can be ob-
tained by defining £ incommensurate intervals and order-
ing them in special substitution. It has been proved that,
in the cases of k < 5, the structures are strict quasiperi-
odic, i.e., their Fourier transforms are a sum of weighted
é functions and the peaks are indexible using a finite set
of base vectors. These structures can also be obtained
by a projection method from k-dimensional hyperspace
onto a line, whose orientation cosines satisfy Eq. (7). In
this case the diffraction patterns are related to (k —1) ir-
rational numbers and the diffraction peak positions can
be labeled by k integers. It is interesting to note that
the periodic and standard Fibonacci structures can be
thought of as the degenerate case for k = 1 and k& = 2,
respectively. In the case of k > 5, the structures are not
strict quasiperiodic. We believe that they are still order-
ing and their behavior is intermediate between quasperi-
odicity and randomness. A sequence generated through
substitution consisting of only k different intervals can al-
ways be obtained from the projection of the directed walk
on a k-dimensional hypercubic lattice.!* For k > 5, the
directed walk seems to have unbounded fluctuations, i.e.,
the fluctuation of the positions of lattice points around
their average lattice diverges as length of the chain in-
creases. However, it is possible that their Fourier spectra
are discrete. In physical terms, this means that the struc-
ture is quasiperiodic, but is not strict quasiperiodic and
has no average lattice. Such as the cases of k = 6,7,8,9,
some discrete peaks can be found. As k increase, the
diffraction spectra will get away from the discrete one.
For example, k = 277, the simulated result is very com-
plex, the spectrum is neither discrete nor continuance.
‘We speculate that the spectrum may be approached to
chaos. In a more precise way, the order in the sequence
is best analyzed in terms of the fluctuation of the lifted
structure in perp space.l® However, a model with & in-
commensurate lengths is far more difficult to study than
that with only one length or two arbitrary lengths. In
spite of the difficulty, further theoretical and experimen-
tal investigations must be done to explain the transition

between quasiperiodic and nonquasiperiodic.

Finally, these structures are of interest to understand
the links between type of order and quasiperiodicity and
to provide a model for fabrication of quasperiodic super-
lattices for use in a wide range of theoretical and exper-
imental studies based on their unique properties.
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APPENDIX

The statements on the eigenvalues of the substitution
matrix M are proven as follows.1”
Proof 1. Consider the derivative

PL(N) = kX1 — (b — 1)AF72 = M 2(kX — (k — 1))

of Py(\). It is clear that the zero points 0, (k —
1)/k of P[(\) are not the zero points of Py()), so
[Pi(X), P{(X)] = 1. Hence each eigenvalue of M is simple.

Proof 2. Note that M is non-negative and irre-
ducible. By the Perron-Frobenius theorem (Ref. 17,
pp. 536 and 537), we have that Ay = p(M) € o(M)
and 1 < Ao < 2. Let V(ey,co,...,c,) denote the num-
ber of change of sign in the sequence ¢y, ¢y, ..., c, of real
numbers. For the coefficients 1, —1,0,...,0,—1 of Px(}),
v(1,-1,0,...,0,—1) = 1. Thus X is the unique posi-
tive root of Pgx()), by Descartes theorem. If k > 3, then
Py(1)P,(1.466) < 0, and so 1 < A < 1.466 for all k > 3.

Proof 3. It is clear from Ger§gorin’s theorem (Ref. 17,
p. 371) that

o(M) c{z]lz| <1}U{z ||z —-1] <1},
But |\ |71\ —1| = 1for all A\; € 0(M), so o(M)US =
¢, where S is the region enclosed by the curve AOEO1 A
in Fig. 1.

Proof 4. By Taussky’s theorem (Ref. 17, p. 376),
if \; € o(M) lies on the curve ABCDEFNGMHA of
Fig. 1, then \; = e*'% is represented by A and E in
Fig. 1.

Note that A; = e**5 implies A$ = 1. If k¥ = 5(mod6),
then Py(e**¥) = 0, so A\; € o(M). In addition, the
following results are straightforward:
eF —1-1#0 when k = 1(mod 6),
e —ef —1#£0 when k= 2(mod 6),
—1—¢e%F —1#0 when k = 3(mod 6),
etF —e™ —1#0 when k= 4(mod 6),
1—¢eF —1#0  when k = 0(mod 6).
But Py (e*5) = 0 if and only if Py(e™*3) = 0, so 4 has
been proved.

Proof 5. We have seen in the proof above of 2 that Ag
is the unique positive root of Px()), i.e., Ag is the unique
positive eigenvalue of M.

Pk(e’%) =
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Consider
k k-1 _ 1

—zf —x , if k is odd,
Py(~z) = {mk +zk-1_1,

if k is even.

Note that V(-1,-1,0,...,0,-1) = 0, V(1,1,0,...,0,
—1) = 1, we know that the number of negative eigenval-
ues of M is

{0

"=t

by Descarte’s theorem. Since P(0) = —1 # 0, we com-
pleted the proof 5.

Proof 6. Let the nonreal roots of P(\) be A = re® (r >
0,0 < 0 < 2m). For the nonreal roots of modulus greater
than 1, we have r > 1, —% < # < % by proof 3. Since
nonreal roots come by pairs of complex conjugate num-
bers, we only need to consider 0 < § < Z. By De

Moivre’s theorem, the equation P, (A) = 0 can be written
in the form of a system of equations:

if k£ is odd,
if k is even,

r* coskf — r*"1cos(k — 1) — 1 =0, (A1)

rsin k@ = sin(k — 1)6, (A2)

multiplying each side of Eq. (Al) by sink6(# 0), then
substituting (A2) into it, we obtain
r*=1[sin(k — 1)6 cos k@ — sin kf cos(k — 1)6] — sink6 = 0,
ie,

sink@ +r*~1sind = 0. (A3)

Hence, the system of Eqgs. (Al) and (A2) is equivalent
to that of (A2) and (A3).

Substituting (A2) into (A3), we obtain an equation on
o:

(A4)

k—1
sin k@ + M sinf = 0.
sin k6

Let

k—1
L sin(k — 1)0 .
f(8) =sink6 + (W) sin 6,

since r > 1, we consider two cases as follows.
Case 1. sin(k — 1)6 < sinkf < 0. In this case,

@e2n—-1)r<kf<2nm, neN
and
sinkf —sin(k — 1) >0 <
2cos k_19s1n2>0 &=
T 2k-—1 T
2m7r—§< 3 0<2m7r+§, méE N,
i.e.,

2n —1 2n

% 7r<9<?7r,
4m —1 4m+1
m'ﬂ'<e<mﬂ', n,m € N.

Note that § < %, so k& > 6n. When n > m (n,m are
integers, n —m > 1), we have

2n—1 > 4dm +1
k 2k—1’
but when n < m, we also have
2n < 4m —1
k 2k—1"°
Therefore, we must have n = m and

4n —1 <0<2n
%k—1" kT

From this it follows that

(A5)

™ 4n —1

2, == on,
2-+-2(2k_1)71'<kt9< nmw

2nm —

T an — 1
2 2(2k-1)

2nm

2nm — m,

m<(k—1)0 < 2nm —

n —1 4n —1 L 4dn—1
gz = —cos gy toin g ="

= dn — 1 ™ 1—2sin—-———4n—1 ™
RS TCTISEY) 202k - 1)

<0.

Note that 22=1r <« 0 < Z = sin s52=L.r < 1 ) and
2k—1 3 2(2k=1) 2

f<2nT7r—O) —»—0+1"sin2—2—7-E > 0.

On the other hand, the derivative of f(6) is
f'(6) = kcos k@ + r*"2(k — 1)rpsin 8 + r*~1 cos 6,

where
. (k — 1) cos(k — 1)0sin kb — k cos k@ sin(k — 1)6
o= sin? k6
_(k—1)sin® — coskfsin(k — 1)6

sin? k6

When 6 satisfies (A5), we have
coskf >0, sin(k—1)0 <0, sinf >0, cosf >0,
hence r > 0, so f(0)’ > 0, i.e., f(6) is monotonic.

Consequently, for each n = 0,1,...,[k/6] — 1, there
always exists a 6, which satisfies condition (A5), such
that f(6) = 0. It is clear that the system of equations
(A2) and (A4) is equivalent to that of (Al)and (A2).

Case 2. sin(k —1)0 > sin k@ > 0. Similar to case 1, we
obtain
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4n+17r<9<2n+1
2k —1 k

Clearly, (k — 1)0 and k6 lie in the I or II quadrant. So
that f(8) > 0, i.e., no solution of Py(A) = 0 exists in this
case.

In summary, considering that the nonreal roots of
Py ()\) = 0 come by pairs of complex conjugate numbers,

.

the number of pairs of nonreal roots of modulus greater
than 1 is [k/6]. And they satisfy

n —1 2n

mﬂ'<9<7ﬂ', ’I’L——O,l,...,[k/ﬁ]—l,
__sin(k—1)8

~ sinkf

*On leave from National Laboratory of Solid State Mi-
crostructures, Nanjing University, Nanjing 210008, Peo-
ple’s Republic of China.
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