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We present a concrete picture of spoof surface plasmons �SSPs� combined with cavity resonance to clarify
the basic mechanism underlying extraordinary light transmission through metal films with subwavelength slits
or holes. This picture may indicate a general mechanism of metallic nanostructure optics: When light is
incident on a nonplanar conducting surface, the free electrons cannot move homogeneously in response to the
incident electric field, i.e., their movement can be impeded at the rough parts, forming inhomogeneous charge
distributions. The oscillating charges and dipoles then emit photons �similar to Thomson scattering of x rays by
oscillating electrons�, and the interference between the photons may give rise to anomalous transmission,
reflection, or scattering.
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Since the discovery of extraordinary light transmission
through metal films perforated by subwavelength hole arrays
�1�, tremendous theoretical and experimental work has been
carried out to understand the underlying physics. Several
mechanisms, particularly surface plasmons �SPs�, have been
proposed as the possible origins �2–8�. However, no univer-
sal understanding has been reached to date. Here based on
first-principle calculations, we present a charge oscillation-
induced light emission mechanism, which gives the origin of
enhanced transmission in subwavelength systems and may
also shed light on the fundamental of interactions between
light and metallic nanostructures.

In nonmagnetic media, the electric and magnetic fields are
coupled by Maxwell’s equations ��E=−iKH and ��H
= iK�E �K=2� /�, � the wavelength in vacuum, and � the
effective permittivity�. For varying ��r� �i.e., ���0�, the
divergence of the second equation generally gives � ·E
=−����� ·E� /�=4���0, where � is the charge density.
Consider in Fig. 1 the free-standing one-dimensional �1D�
gold grating illuminated by a plane wave, where Maxwell’s
equations can be solved by the rigorous coupled-wave analy-
sis �RCWA�, a first-principle method �9�. For simplicity, we
only discuss normal incidence here. Figure 1 shows the zero-
order transmittance �T0� spectra of both TM �H � ŷ� �4,5� and
TE �E � ŷ� waves �10�. Here RCWA correctly reveals the cut-
off wavelength �c�2W, above which transmission of TE
waves is forbidden. The reason is that TE waves in the
slit approximately take the waveguide modes Ey
�sin�m�x /W�exp�±i�z�4/�2−m2 /W2�1/2� �m�0 being inte-
gers� �11�, where for ��2W, all the modes are evanescent.
The drastic difference between the TE and TM spectra stems
from the fact that TE waves satisfy � ·E�0 while TM
waves may induce electric charge oscillation ��r�ei	t �	 the
frequency�, where ��r�=� ·E�r� /4�.

For TM polarization, the vertical component Ez�x ,z� of
the electric field �invariant with y� has abrupt discontinuity
across the surfaces at zs=0 and h, from which one obtains the
surface charge density �̃s�x ,zs�=
Ez�x ,zs� /4�. In Fig. 2�a�,

the calculated �̃s�x ,0� profile correctly shows that charges
only exist on the metal surface ��̃s�x ,0�=0 for 0�x�W�,
and the charges tend to accumulate at the metal corners. At
resonant wavelengths, �̃s�x ,0���−1�N�̃s�x ,h�, i.e., the
charge patterns on the two surfaces are nearly the same, but
they have opposite signs for odd resonant numbers N �de-
fined below�. The bulk charge density is given by �v
=� ·E /4�. In Fig. 2�b�, the �v�x ,z=const� curve calculated
from the internal E eigenmodes reveals that there is a strong
peak exactly centered at each slit wall, xw=0 or W �plus any
multiple of d�. When sufficient diffraction orders �1601 or-
ders in Fig. 2� are retained in RCWA, �v�x ,z=const� ap-
proaches a delta function across xw �see inset of Fig. 2�b��,
i.e., charges inside the grating also appear as surface charges
on the walls.

The profile �v�0,z� ��−�v�W ,z�� plotted in Fig. 2�c�
shows that in the central range the charge density on the wall
is nearly a standing wave �with wave vector kz�2� /��. This
indicates that the electric field in the slit is also a standing
wave �12,13� consisting of a forward wave Ea�Ea exp
�−ikzz�x̂ and a backward wave Eb�Eb exp�ikzz�x̂ in Fig. 3.
Note that ��v�xw ,z�� increases sharply when z→zs in Fig.
2�c�. Mathematically, the charge density at each corner con-
sists of both �̃s�xw ,zs� and �v�xw ,z→zs�. Since they are al-
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FIG. 1. �Color online� Transmission spectra of a gold grating
with period d=3.5, slit width W=0.5, and thickness h=4 �m. x̂, ŷ,
ẑ are unit vectors. The TM� curve was calculated with Re��c�	��
��0� for gold replaced by −Re��c�	��.
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ways in phase, these two contributions are superimposed
constructively. This makes the total charge densities at the
corners much higher than in other regions, which is a typical
edge effect. Consequently, there exist two large oscillating
dipoles at the two ends of the slit.

Now we may obtain a clear picture about the light scat-
tering process. As shown in Fig. 3, the incident electric field
Ein drives �mainly� free electrons on the metal surface to
move, but the movement is blocked at one corner of the
metal, resulting in accumulation of electrons there. Mean-
while, extra positive charges appear at the other corner since
some of the electrons have moved away. Thus, two dipoles
Pa and Pr are formed. Since they oscillate with the incident
wave, these dipoles act as light sources emitting new wave-
lets �photons�, which form scattered waves �Thomson scat-
tering�. If we consider each period of the array as an overall
scattering unit, the wavelets emitted from two adjacent units
have a path difference d sin  along an arbitrary direction .
Note that for a subwavelength slit array with d��, we have
d sin �d��, so the phase difference can never reach 2�.
This means that the oblique wavelets always tend to cancel
each other out in the far fields �destructive interference, simi-
lar to the absence of x-ray diffraction at non-Bragg angles�.
Thus, they form evanescent waves near the surface. Math-
ematically, these evanescent waves can be expressed as
Em exp�−�Gm

2 −K2�1/2 �z �−iGmx�, where Gm=2m� /d �m�0
being integers� and K=2� /� �note that �Gm � �K for d���
�9�.

One may prove that for any wavelength ��d, the charge
patterns on the upper surface are always the same as that in
Fig. 2�a� except that the peak heights vary with �. Therefore,
the period of the charge density wave always equals the lat-
tice constant d and is irrelevant to the dispersion relation
ksp=K��c / �1+�c��1/2 of a classical SP �CSP� �14� at all ��c

the conductor’s permittivity and ksp the wave vector of the

CSP�. However, the evanescent waves are indeed surface-
bound modes with their strengths decaying exponentially
along −z. So they are spoof SPs �SSPs� �15�, but their for-
mation is the result of charge oscillation-induced light emis-
sion and destructive interference. The SSP model has been
conceptually proposed by Pendry et al. �3� �also see Ref.
�16��. Here we provide a concrete picture illustrating its ori-
gin.

The wavelets propagating along the backward direction
�=0� are always in phase �the path difference is zero�.
Therefore, the back reflected wave is not evanescent but a
propagating mode. However, since ER and Er always have
opposite directions, they tend to offset each other, thus re-
ducing the overall back reflection.

In Fig. 3, dipole Pa also emits a wavelet Ea inside the slit.
Similarly, electrons on the slit walls also move in response to
the electric field in the slit �represented by the current J�.
Then the charge movement is disrupted again at the exit
edges, giving rise to another large dipole Pb. Through this
tunneling process, the charge patterns on the upper surface
are duplicated on the lower surface. Oblique wavelets emit-
ted from these duplicated light sources then form SSPs again
below the grating. The subwavelets ET and Et along the for-
ward direction form the zero-order transmitted wave. Over-
all, the grating only emits two propagating modes, the re-
flected and transmitted waves, that share the incident energy,
while all the other modes are SSPs.

The oscillating dipole Pb can give a strong feedback to the
upper surface by emitting a wavelet Eb propagating upward.
If Eb is not in phase with Ea �and Ein� at z=0, it suppresses
the strengths of Pa and ER. Then Er, which includes specular
reflection from the metal surface, becomes dominant, leading
to strong backward reflection. The weakened Ea meanwhile
reduces Pb. However, if Eb is in phase with Ea at z=0, it
enhances Pa. The enhanced Pa subsequently strengthens Ea,
Pb, Eb, and so on. Then a Fabry-Perot-like resonant state is
formed with the strengths of all the dipoles and wavelets
maximized. Under this condition, Er is largely offset by ER

FIG. 2. �Color online� Charge distributions in the gold grating of
Fig. 1 under resonance. TM polarization. �=4.845 �m �for peak
N=2 in Fig. 1�. �a� Surface charge densities. �b� Sectional charge
densities. �c� Charge densities on the wall.

FIG. 3. Light transmission process in the 1D grating. The phases
�directions� of the waves and dipoles are based on Fig. 2 �and they
all have a common oscillating factor ei	t�.
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in the far-field regions, leading to minimized backward re-
flection. Below the grating, wavelet Et also partly offsets ET,
but �ET� can be much larger than �Et� �unlike Er, Et does not
include any specular reflection�. Therefore, when ET is maxi-
mized, it maximizes T0. The resonant wavelength is always
slightly longer than 2h /N, the ideal Fabry-Perot wavelength,
where N is the resonant number �number of the standing
wave nodes�. Although the Fabry-Perot-like resonance has
been recognized before �4,5,12,13,17,18�, here we explicitly
illustrated its origin. Particularly, Fig. 3 shows that it is di-
poles Pa and Pb that act as the two “reflecting planes” re-
quired to form a vertical resonator �13�.

Note that when ��d, some of the oblique waves satisfy-
ing �Gm � �K become propagating diffracted waves �i.e., they
are no longer SSP modes�. The sharing of the incident energy
by these diffracted waves significantly reduces T0 �and back-
ward reflection�. This explains the much lower transmittance
in the ��d range in Fig. 1.

Light scattering from a 2D hole array has a similar pic-
ture. The incident electric field drives electrons on the upper
surface to oscillate. The charge movement is blocked at the
hole edges, giving rise to oscillating dipoles at the entrance
openings. Thus, the holes act as a 2D array of light sources.
For a subwavelength lattice with max�d ,d2��� �Fig. 4�, the
phase difference between wavelets emitting from adjacent
holes again is less than 2� along any oblique directions. So
these wavelets form SSPs above the film except that the
wavelets along −z constitute a nonevanescent reflected wave

�which offsets specular backward reflection�. Meanwhile, the
charge patterns are tunneled onto the lower surface due to the
charge movement on the hole walls. Consequently, a similar
set of SSPs and a forward transmitted wave are formed be-
low the film.

However, 2D holes have a different tunneling mechanism.
Consider the rectangular hole �a unit cell of an array� in Fig.
4. Except for the wave distortions near the ends, the electric
fields in the hole roughly take the waveguide modes. For
subwavelength holes, the basic 2D TE1,0 modes dominate
�3,11�. When ��2L, the modes in the hole are evanescent
and approximately take the forms Ea�sin��y /L�exp�−�z�x̂
and Eb�sin��y /L�exp�−��h−z��x̂, where �=��1/L2

−4/�2�1/2 �13�. Ea drives charges on the walls to move/
oscillate, but the charge density decays with decaying Ea
toward +z due to the waveguide restriction. Nevertheless, the
sharp discontinuity of the charge movements at the exit end
can still cause significant accumulation of charges there, giv-
ing rise to a relatively large dipole Pb, provided that h is
adequately small. Since Ea and Eb no longer have position-
dependent phase factors, they are always in phase with each
other and the incident wave, and they always resonate as the
feedback Eb is always constructive. But the strengths of the
dipoles and wavelets decrease with increasing h due to the
decaying effect. For fixed h and in the absence of diffraction
effects, the transmittance would increase monotonically with
� decreasing toward 2L �� decreasing�. However, when �
�max�d ,d2�, diffracted waves emerge, which reduces the
zero-order transmittance in the short-wavelength range.
Therefore, strongest transmission must occur for �
�max�d ,d2�, the nondiffraction range, but meanwhile �
should still be close to max�d ,d2� so that the damping coef-
ficient � is sufficiently small.

This picture agrees very well with the measured transmis-
sion spectra in the literature, and our finite-difference time-
domain �FDTD� computations have unambiguously proved
it. Figure 4�c� shows the calculated charge distribution
���x ,y ,0�� on a free-standing silver film with a hole array,
where the charges again exist mainly on the two walls x
=xw �perpendicular to the charge movement direction�. The
residual charges in other regions are surface charges and they
disappear for 0�z�h. �Here note that FDTD gives the
overall charge densities.� The shape of the ��0,y ,z� ��
−��W ,y ,z�	sin��y /L�� profile is independent of z, but the
maximum density ��0,L /2 ,z� changes with z in inset II.
Here our calculations indeed reveal the two large dipoles at
the two openings of the hole �also see Ref. �19� for the
single-hole case�.

The above illustrations may indicate a general Thomson
scattering mechanism of metallic nanostructures similar to
x-ray scattering by oscillating electrons. That is, free elec-
trons on a nonplanar conducting surface cannot move homo-
geneously in response to the incident wave, thus forming
inhomogeneous charge distributions. The oscillating charges
then emit wavelets, and the interference between the wave-
lets may give rise to anomalous light scattering. The basic
requirement here is free electrons, so this mechanism can
explain scattering from various conducting nanostructures,
including perfect conductors and conductors with Re��c�

FIG. 4. Light transmission through 2D hole arrays. �a� The unit
cell of 2D lattice viewed along z. �b� Side view. Here the dipoles
similar to those denoted by Pr in Fig. 3 are omitted. �c� Charge
densities ���x ,y ,0�� of a silver hole array: h=100, W=L=150, d
=d2=600 nm. �=673 nm, corresponding to peak P in the zero-
order transmittance �T00� spectrum in inset I. Inset II: Profiles
��0,y ,0� and ��0,L /2 ,z� with constant phases at �=673 nm.
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�0 �see the TM� curve in Fig. 1 and the experiments and
simulations of tungsten hole arrays with positive Re��c� in
Refs. �8,20��. It is also applicable to nonperiodic structures.
For example, Fig. 3 indicates that an isolated slit �or hole�
can still be a single light source emitting divergent light. If
the slit is surrounded by grooves �in which the cavity reso-
nance may be different though�, the grooves provide addi-
tional light sources that suppress the oblique wavelets �form-
ing SSPs�. Meanwhile, wavelets emitted from the grooves
along the backward direction offset specular reflection. Thus,
transmission is enhanced. If grooves also exist on the exit
surface, they again suppress oblique wavelets so that a col-
limated zero-order transmitted beam can be achieved �2�. As
another example, it is known that when a nanowire is illu-
minated by a TM wave at one end, light can be “transferred”
to the other end �21,22�. The common explanation is that
light is transferred by CSPs on the wire, but the dispersion
trend in Ref. �21� is quite different from that of CSPs. Based
on our mechanism, the incident wave causes inhomogeneous
charges at the illuminated end that tend to propagate away
due to the charge-neutral tendency. This is similar to normal

electricity transmission over metallic wires. The charge
movement is then discontinued at the other end, leading to
charge accumulation and oscillation that emit new light. The
electrons can be bounced back, resulting in a Fabry-Perot-
like charge pattern �that obviously do not need to obey the
CSP principle�. Here high conductivity can enhance the
transfer efficiency, which is opposite to the CSP prediction
that �nearly� perfect conductors do not support CSPs. Over-
all, our mechanism reveals the fundamental of metallic nano-
structure optics.
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