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In this work, we propose an approach to realize field-dependent multimode quantized thermal
conductance by introducing both harmonic and anharmonic couplings to a quantum wire. It is
demonstrated theoretically that by stretching �or compressing� the wire, phononic band structures
are tuned and multiple phononic channels are opened one by one. In this way, multiple-step
quantized thermal conductance is realized. The research opens a way to manipulate heat transfer in
mesoscopic phonon systems. © 2008 American Institute of Physics. �DOI: 10.1063/1.2956673�

Quantum transport in low dimension has attracted much
attention in the past two decades. One of the remarkable
achievements is the quantization of electrical conduction dis-
covered by von Wees et al.1 and Wharam et al.2 Due to the
quantum confinement in mesoscopic systems, electronic
eigenstates become discrete, which is called the channels
for electron transport. Each ballistic channel contributes a
quantum to the electrical conductance. Similar phenomena
occur in phononic transport and thermal transfer in mesos-
copic phonon systems. The thermal conductance of a single
channel is limited by its universal thermal conductance quan-
tum, which was predicted in Refs. 3 and 4 and later demon-
strated in nanostructures.5 The single-mode photon-assisted
thermal conductance has recently been observed,6 and ther-
mal rectifiers7–10 are realized to modulate heat flux. The in-
depth understanding of microscopic laws of heat transfer is
important in designing thermoelectronic systems11,12 and for
the development information theory.13

It has been established that anharmonic potential can in-
duce anomalous scaling relation of heat flux in a chain,14 and
generate nonlinear normal modes, i.e., solitons.15 The ther-
mal diodes8 and transistors16 can be realized by coupling
nonlinear lattices. In this letter, we introduce both harmonic
and anharmonic potentials to a wire to realize the multimode
quantized thermal conductance. This is an approach to open
channels for phononic transport.

We propose a n-mer wire �NMW� model, which consists
of three segments: left, right, and central segments �as shown
in Fig. 1�a��. The left �or right� segment is a random n-mer
�RN� chain containing different particles A and B. Particles A
and B are arranged in such a way that particle A and a cluster
of n particles B¯B are randomly assigned, known as RN
model.17 In this segment, all the interaction potentials are
harmonic. The central segment of the NMW, in contrast, is a
periodic chain composed of two kinds of particles A and C in
format of ACAC . . .AC. The connection C-A is harmonic,
whereas the connection A−C is weakly nonlinear. Following
Feimi, Pasta, and Ulam �FPU�,15,18 we let the interaction A-C
take cubic-interaction-term potential ���. In this way, the
harmonic potential and FPU-� potential appear alternately in
the central segment of the wire.

Now we consider phononic transport in the NMW,
whose ends are acted by a stretching force. The Hamiltonian
of the central segment in the NMW can be expressed as
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i
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i�even
VFPU−��i� , �1�

where mi and pi are the mass and the momentum of the ith
particle, respectively. � is the strength of the harmonic cou-
pling of particles, and ��i=�i−�i−1 denotes the relative dis-
placement between the neighboring particles. The FPU-� po-
tential is described as18

VFPU−��i� =
��

2
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�
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Here �� and � represent the strength of the linear-interaction
term and the cubic-interaction term in the interaction A-C,
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FIG. 1. �Color online� �a� Schematic diagram of an NMW, which consists of
three segments as described in the text. �b� Schematic diagram of a tunable
phononic band in the NMW. In the left and the right segments, some
�-function-like PBS levels locate at the resonant frequencies � j�j
=1,2,3, . . . � in the RN chain. While in the central segment, acoustic branch
is tuned by stretching, and the curve with different colors corresponds to
different stretching. The inset shows that the cutoff frequency �cutoff of the
acoustic branch in central segment increases upon stretching the wire, where
F1, F2, F3, and F4 refer to different stretching, respectively. By increasing
the stretching, �cutoff gradually sweeps over � j�j=1,2,3, . . . �, hence multiple
phononic channels are sequentially opened.
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respectively. Once stretching the NMW, the wire is elongate,
i.e., ��i adds a static term l �l stands for the displacement of
particle away from the equilibrium position.� It is proved that
when the FPU-� potential is sufficiently weak, the FPU-�
potential can degenerate into a quasiharmonic one as
VFPU−��i��V0�i�+�eff /2���i�2, where V0�i� is a static poten-
tial, and �eff is the strength of the effective harmonic poten-
tial as �eff=��+3�l2. Obviously, both l and �eff can be con-
trolled by stretching or compressing the wire. We will see
that the external stretching can tune the phononic band struc-
ture �PBS� of the NMW.

The PBS of the whole NMW is determined by the
phonons that can penetrate all three segments. On one
hand, the central segment of NMW is a periodic chain
composed of particles A and C, hence its PBS contains
both an acoustic branch and an optical brance in the frame
of the quasiharmonic approach. For the acoustic branch,
the cutoff frequency of is given by �cutoff= �D
−�D2−16��effmAmC� / �2mAmC�, where D= ��+�eff��mA

+mc�. By increasing the stretching, �eff gradually increases;
hence the cutoff frequency gradually increases in the central
segment of NMW �as shown in the inset of Fig. 1�b��. On the
other hand, the left �or right� segment of NMW is the RN
chain containing particles A and B. Due to the localization-
delocalization transition of phonons in the RN chain, mul-
tiple resonant transmission can be obtained, thereafter,
�-function-like resonant modes can be achieved in the RN
chain17 �as shown in Fig. 1�b��. Now the effective Hamil-
tonian of the whole NMW contains two parts: one is from
the localized phonons �Hloc�, and the other is from the delo-
calized phonons, i.e.,

H = Hloc + �
�j��cutoff

	� jaj
+aj , �3�

where aj
+aj is the number of delocalized phonons, and � j is

the resonant frequency17 given by � j
2=2� /mB�1−cos j
 /n�,

where j=1,2 , . . . ,n−1. This Hamiltonian decides the heat
current in the NMW.

Connect the NMW to two heat reservoirs with tempera-
ture TH and TL, respectively. By taking Eq. �3� to Landauer
formula,4 the heat current J through the NMW is

J = �
j
�

0

�cutoff

d� · 	���� − � j�T�����hot��� − �cold���� ,

�4�

where �hot�cold� is the Bose–Einstein distribution of two heat
reservoirs, T��� is the phonon transmission coefficient,
which depends on phonon scattering in the NMW. Hence, the
thermal conductance can be expressed as

� = lim
�T→0

J

�T
= �

j

�q · �� j − �cutoff� , �5�

where �x� is a step function �note: �x�=1 if x�0, or
�x�=0 if x�0�, and �q is the quantum of thermal conduc-
tance. It is proved that �q is given by

�q =
kB

2T

	

xj
2exj

�exj − 1�2 , �6�

where xj =	� j /kBT, and kB is the Boltzmann constant. Obvi-
ously according to Eq. �5�, the thermal conductance in the
NMW is shown by a series of conductance steps.

It should be pointed out that by increasing the stretching
on the NMW, the cutoff frequency �cutoff in the central seg-
ment gradually sweeps over all the resonant frequencies in
the left and right segments �as shown in Fig. 1�b��. Accu-
rately, once the stretching is stronger than the resonant
stretching �Fs�, i.e., �eff�Fs= ���mA+mC�� j

2

−mAmC� j
4� / �4�− �mA+mC�� j

2, the cutoff frequency sweeps a
resonant frequency � j, hence a phononic channel is opened.
Therefore, by stretching the NMW, multiple phononic chan-
nels are opened sequentially, and multiple-step thermal con-
ductivity is achieved �as shown in Eqs.�5� and �6��. Interest-
ingly, the phononic behavior in the NMW is exactly imitative
of the electronic one in quantum Hall effect. The
�-function-like phononic levels in the NMW are analog to
Landau levels. Meanwhile, external stretching on the NMW,
which tunes the occupation of phononic levels, is analog to
the magnetic field tuning Landau levels in quantum Hall ef-
fect. The cutoff frequency acts in the NMW just like a “gate
voltage” in electronic scenario. In this way, multiple-step
quantized thermal conductance can be achieved by tuning
the external field.

The above analytical analysis can be demonstrated by
the numerical calculation. Based on the transfer-matrix
method in a quantum wire,17 we first calculate frequency
spectrum and transmission coefficient of phonons in the
NMW under different stretchings. The fix-boundary condi-
tion is applied in the calculation. Then we calculate the heat
current and the thermal conductance in the NMW according
to Eqs. �4� and �5�. Figure 2�a� presents the thermal conduc-
tance as a function of the stretching ��eff� in a dimer wire
�n=2 in NMW�. It is shown that when the stretching is weak
enough, the thermal conductance keeps stable on a low level.
By increasing the stretching up to around the resonant
stretching Fs

RD, the thermal conductance jumps. �Here Fs
RD

is the resonant stretching corresponding to the delocalized
frequency � j =�RD=�2� /mB in the dimer wire.� Further in-
creasing the stretching, thermal conductance remains stable
on the higher level. Actually, when the stretching is far below

FIG. 2. �a� The thermal conductance � as a function
of the stretching ��eff� in the dimer wire �i.e., the
NMW with n=2�, where the total number of atoms is
N=2113. �b� and �d� illustrate the transmission coeffi-
cients of phonons in the same dimer wire at different
stretching �f i , i=1,2�, which is marked in the curve of
thermal conductance. �c� and �e� illustrate the frequency
spectra of phonons in the same dimer wire at different
stretching �f i , i=1,2�, respectively. The calculation
parameters are set as mA=1.0, mB=1.4, mC=2.0,
�=2.0, TH=	�� /kB, and TL=0.1TH, respectively. Here
��	1013 s−1, which is the oscillator frequency of the
typical atom.
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Fs
RD, phonons in the wire exists at low frequency only �as

shown in Figs. 2�b� and 2�c��. Once the stretching becomes
as large as Fs

RD, the cutoff frequency �cutoff in the central
segment reaches the resonant frequency �RD in the left and
right segments. Consequently an additional phononic chan-
nel is indeed opened and the quantized heat transfer is
achieved �as shown in Figs. 2�d� and 2�e��.

In order to open multiple phononic channels by the
stretching, we come to the NMW with larger n. Figure 3�a�
presents the thermal conductance versus the stretching in a
trimer wire �n=3�. By increasing the stretching, thermal con-
ductance jumps twice around the resonant stretching Fs�1�
and Fs�2�, respectively �as shown in Fig. 3�a��. It is known
that in the trimer wire, there are two localization-
delocalization transitions of phonons,17 which happen around
the phononic frequencies �RT�1�=�� /mB and �RT�2�
=�3� /mB, respectively. These two delocalized frequencies
correspond to the resonant stretching Fs�1� and Fs�2�, re-
spectively. When the stretching is far below Fs�1�, phonons
exist at low frequency only �as shown in Figs. 3�b� and 3�c��.
When the stretching becomes stronger than Fs�1�, the first
phononic band occurs in the high-frequency region �as
shown in Figs. 3�d� and 3�e��. This phononic band originates
from phononic delocalization at �RT�1� in trimer wire, which
means that the first phononic channel is opened, and the
thermal conductance has the first jump. Further increasing
the stretching to Fs�2�, the second delocalization of phonons
happens at �RT�2�, then the second channel of phonons is
opened �as shown in Figs. 3�f� and 3�g��, and the thermal
conductance has the second jump. Similarly, external stretch-
ing can open sequentially three phononic channels in the
quadramer wire �n=4�, where thermal conductance presents
three steps. In principle, n−1 steps of thermal conductance
can be found in the NMW by increasing the stretching.
Therefore, by increasing the stretching, n−1 channels for
thermal transfer are opened sequentially in the NMW, and
multimode quantized thermal conductance is achieved.

It is possible to find an experimental system with both
harmonic and anharmonic potentials, which can also be
tuned by stretching or compressing. One of the candidates is
a double-stranded DNA,19 where both harmonic and anhar-
monic potentials exist simultaneously. Furthermore, DNA
molecules are stretchable.20 We expect that in such a system
multimode quantized thermal conductance can be realized by
external stretching.

In summary, we have demonstrated theoretically the
field-dependent multimode quantized thermal conductance in
a quantum wire. Our research presents a possibility to design

a smart material that may tune the thermal conductance by
itself upon thermal expansion, and hence manipulate heat
transfer in the system. What is more interesting is that based
on the system, where multiple phonon channels are tuned by
external field, it is possible to design kinds of functional
devices of phonons. Future studies may provide the in-depth
understanding of microscopic laws of heat transfer, and con-
tribute to design functional thermal-conductive materials and
also develop information theory on heat.
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FIG. 3. �a� The thermal conductance � as a function of
the stretching ��eff� in the trimer wire �i.e., the NMW
with n=3�, where the total number of atoms is N
=3255. �b�, �d�, and �f� illustrate the transmission coef-
ficients of phonons in the same trimer wire at different
stretching �f i , i=1,2,3�, which is marked in the curve of
thermal conductance. �c�, �e�, and �g� illustrate the fre-
quency spectra of phonons in the same trimer wire at
different stretching �f i , i=1,2,3�, respectively. The cal-
culation parameters are the same as those in Fig. 2.
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