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Interactions between light and conducting microstructures or nanostructures can result in a variety of novel
phenomena, but their underlying mechanisms have not been completely understood. From calculations of sur-
face charge density waves on conducting gratings and by comparing them with classical surface plasmons, we
revealed a general yet concrete picture regarding the coupling of light to free electron oscillation on structured
conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., structured surface plas-
mons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves.
This principle, usually combined with other mechanisms, is mainly a geometrical effect that can be universally
involved in light scattering from all periodic and non-periodic structures containing free electrons. This picture
may provide clear guidelines for developing conductor-based nano-optical devices. © 2010 Optical Society of
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1. INTRODUCTION

The various novel and unusual optical properties of con-
ducting microstructures or nanostructures, such as
anomalous diffraction from metallic gratings, enhanced
light transmission through subwavelength slits or holes,
light polarizing through wire grid polarizers, surface-
enhanced Raman scattering, etc., have attracted tremen-
dous attention in recent years [1-4]. To date, the coupling
of light with surface plasmons (SPs) has been widely
adopted to explain these anomalous phenomena. How-
ever, the SP picture elaborated in numerous case studies
in the literature actually corresponds to a very general
concept about coupling of electromagnetic (EM) waves to
free electron oscillation on conducting surfaces that can
generate evanescent EM wave modes. This big picture is
correct without doubt, but it is too general for one to ob-
tain a clear and straightforward understanding of the es-
sential underlying mechanism. Because of this uncer-
tainty, the SP-like wave modes have been usually
assumed to be the same as the classical SPs (CSPs) on
planar metal surfaces [5], but this assumption is obvi-
ously challenged by the fact that (nearly) perfectly con-
ducting structures that do not support CSPs still have
similar but stronger anomalous light scattering properties
[6,7]. Conductors with positive permittivity do not sup-
port CSPs either, but they can also exhibit light transmis-
sion anomalies [8-10]. (Extraordinary transmission
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through gratings can even occur for acoustic waves [11],
which is completely irrelevant to SPs.) Because of these
contradictions, the origin of anomalous light scattering
from metallic microstructures is still being argued (e.g.,
see [12-16]).

Using modern computing techniques one may numeri-
cally solve Maxwell’s equations for various complicated
structures, but in the literature such computations have
been largely focused on the EM fields. Surprisingly, the
detailed mechanisms of free electron oscillation have been
almost completely ignored, although they are known to
play the fundamental role in the SP picture. Recently, we
have briefly reported our computations of surface charge
density waves (SCDWs) and the role they play in the pro-
cess of enhanced light transmission through slit and hole
arrays [9]. In this paper, we give a detailed and compre-
hensive illustration of the basic mechanism regarding
light emission and interference from incident-wave-
driven free electron oscillations, demonstrate that it is in-
volved in light scattering from all periodic and non-
periodic conducting structures (including perfect
conductors), and thus establish a simple and universal
structured SP picture. This picture provides a concrete
view of the general SP concept and may bridge the gaps
between the different mechanisms argued in the litera-
ture. It also provides solid guidelines for designing nano-
optical devices by suggesting researchers concentrate on
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the geometrical parameters of conducting nanostructures
so as to control the locations, strengths, and interference
of the charge-oscillation-induced light sources.

2. CHARGE-OSCILLATION-INDUCED LIGHT
EMISSION AND INTERFERENCE

To illustrate the main picture, we start from the well-
known principle of Thomson scattering of x rays by elec-
trons [17,18], in which the incident x rays (EM waves
with wavelengths ~0.1 nm) force the electrons in atoms
(not necessarily free electrons) to oscillate with the same
frequency. According to the fact that accelerating charges
radiate (an elementary principle of electrodynamics), the
oscillating electrons then emit new wavelets, which form
the scattered waves. This effect also exists in the long
wavelength range (say A>0.1 um), where electrons still
oscillate with the incident wave (giving rise to oscillating
polarization of the atoms). However, since now \ is much
larger than the atoms (~0.1 nm), the net charge density
averaged on the wavelength scale is zero in the bulk. Net
polarization-induced charges do exist on surfaces (or in-
terfaces), but for non-conducting materials, where the
electrons are bound to the atoms and cannot move freely,
the formation of net oscillating charges is very small even
on rough surfaces.

A metal has free conduction electrons that move and os-
cillate easily on the surface in response to external EM
waves and thus may emit new wavelets. But first note
that a CSP corresponds to a surface-bound mode on the
metal. If the oscillating charges emit light, how can the
CSP be non-radiative? To clarify this ambiguity, let us use
the Otto geometry in Fig. 1(a) as an example [5]. At a spe-
cific incident angle 6, [greater than the critical angle
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Fig. 1. CSP on a planar metal surface. “+” an represent
positive and negative charges, respectively. (a) Excitation of the
CSP by Otto geometry. The SCDW is the result of electron oscil-
lations (indicated by the dashed arrows) while the positive
charges are fixed. (b) Symmetric sub-wavelets (E; and E,) from a
period of the charge wave (outlined by the dashed lines) along
6=0. P, and P, represent two oscillating dipoles with opposite
directions, caused by the electron oscillation. (¢) Near fields of the
CSP (while the far fields tend to zero along any direction).

Vol. 27, No. 4/April 2010/J. Opt. Soc. Am. A 719

arcsin(1/n,) of the prism—vacuum interface], the incident
wave can excite a CSP, which is a sinusoidal SCDW on the
metal surface with a wavevector

ky=K(1+1/e,)7 "2, (1)

where ¢, is the permittivity of the metal and K=27/\ (A
the incident wavelength in vacuum). Here 6, must sat-
isfy n,K sin 6,,=Re(ky,), where n,, is the refractive index
of the prism. Under this condition, the incident energy is
largely transferred to the CSP, giving rise to a reflection
dip, as can be proved by Fresnel theory [5].

Note that CSPs can be activated only on metals with
Re(e,) <0 [and meanwhile Im(s,) being small] [5]. The
reason is that under this condition, the spatial period of
the CSP satisfies

d =2m/Re(kg,) <\ 2

based on Eq. (1). Therefore, the CSP is a subwavelength
charge pattern compared with the incident wavelength A.
Consider each period of the CSP in Fig. 1(a) as a scatter
unit that emits new wavelets. Along any arbitrary direc-
tion 6+ 0, the wavelets emitted from two adjacent units
have a path difference

AS=dsin §<d <\, (3)

i.e., the phase difference is less than 27. This means that
the oblique wavelets can never be in phase. Thus, they
tend to cancel each other out in the far fields. The wave-
lets along the vertical direction 6=0, however, are in
phase (AS=0), but viewed from a single period of the
sinusoidal SCDW [Fig. 1(b)], each wavelet consists of two
sub-wavelets with opposite electric fields E; and E, that
also cancel each other out in the far fields. Therefore, all
the emitted wavelets cannot escape the surface along any
direction, so they form an evanescent wave above the sur-
face [Fig. 1(c)] in the form E exp(—ikspx)exp(—,8|z|), where
B=(k3,—K*V? is the evanescent factor. This gives a
simple picture why a CSP corresponds to a surface-bound
mode. The CSP can thus propagate outside the prism-
covered region in Fig. 1(a) without radiation loss, and the
propagation distance depends solely on the absorption of
the metal (ohmic loss).

Here it is obvious that media with Re(e.) >0 do not sup-
port CSPs as the wavevector in Eq. (1) cannot satisfy Eq.
(2). (Nearly) perfect conductors with |e,|]— do not sup-
port CSPs either because kg, — K, d—X\, and 8—0, ie,
the scattered wave above the conductor surface tends to
be non-evanescent (not closely confined to the surface).

Now we consider in Fig. 2(a) a plane wave incident on a
conducting surface without the prism. For normal inci-
dence, the incident electric field E;, drives free electrons
on the surface to move homogenously. So there is no net
charge, and the reflection obeys the Fresnel equations
[19]. [The force exerted by the electric field E of an EM
wave on an electron is —|e|E (e the charge per electron).
Since the motion of free electrons (not the charge waves)
in conductors is much slower than the speed of light (non-
relativistic), the force caused by the magnetic field H of
the wave is negligible.] In Fig. 2(b), a slit (or hole) is
added. Obviously, the electron movement now can be im-
peded near the slit corner. Here some electrons may move
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Fig. 2. Incident-wave-driven electron movement on (a) a flat
conducting surface with no net charge, (b) a conducting surface
with a single slit (net charges and their oscillation at the slit cor-
ners giving rise to a radiative light source), and (c) a conducting
surface with a subwavelength slit array. (d) Periodic net charge
pattern on the upper surface of (c). All the dipoles and electric
fields have a common oscillating factor e’ (¢ the time).

continuously to the vertical slit wall, but such movement
corresponds to an abrupt 90° deflection (large angular ac-
celeration), while the incident wave does not directly pro-
vide the necessary large driving force. So it is reasonable
to assume that most of the moving electrons are stopped
near one corner, while positive charges appear at the op-
posite corner because some electrons have moved away.
This leads to the formation of an electric dipole P, at the
slit opening. P, oscillates with the incident wave with a
time factor e/ (w the angular frequency of the incident
wave), thus acting as a new light source emitting wavelets
[20]. Such a process is in fact a Thomson scattering pro-
cess in the optical frequency range.

Next we apply this process to the one-dimensional (1D)
periodic slit array in Fig. 2(c). For simplicity, we assume
that the grating is semi-infinite so that there is no feed-
back from below. Similar to Fig. 2(b), now each slit be-
comes a light source, but along any oblique direction 6
#0, the wavelets emitted from two adjacent sources have
a path difference AS=d sin 6, where d is the period of the
slit array. For an incident wavelength A>d, Eq. (3) is sat-
isfied again. Then the oblique wavelets are canceled in
the far fields (destructive interference, similar to the ab-
sence of x ray diffraction at non-Bragg angles), i.e., they
also form evanescent waves near the surface. (This prin-
ciple can also explain the fact that no light diffraction oc-
curs from a single-crystal lattice, where the lattice con-
stants are much smaller than the wavelength, although
the electrons still oscillate with the incident wave.)

The charge pattern in Fig. 2(c) is similar to that of the
CSP in Fig. 1, i.e., they are both subwavelength charge
patterns (d<\). However, there are two distinct differ-
ences. First, the CSP is a propagating charge wave with a
specific wavevector determined by the metal’s permittiv-
ity g, in Eq. (1), while the charge pattern in Fig. 2(c) is a
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standing wave (but not sinusoidal) with the period always
equal to the grating period d. So the former is an intrinsic
property of the metal (depending on ¢,), while the latter is
a geometrical effect that can occur for any incident wave-
length A >d and for any conducting materials containing
free electrons (charges) [including perfect conductors and
conductors with Re(e.) >0]. Second, as mentioned above,
a CSP is a complete surface-bound mode. In contrast, the
oscillating charge pattern in Fig. 2(c) is radiative along
#=0 (AS=0). This can be seen from Fig. 2(d), where we
have discarded the oblique evanescent wavelets and
added the dipoles P, that are ignored in Fig. 2(c). In ad-
dition to the wavelet Ep, emitted from P,, P, also emits a
wavelet E, along 6=0 with a phase that is usually very
close to that of the Fresnel reflected wave. So here we let
E, include Fresnel reflection for convenience in discus-
sions. Then the wavelet emitted from a period consists of
two sub-wavelets Ep, and E, along =0 with opposite di-
rections (phases). But unlike in Fig. 1(b), Ep, and E, gen-
erally have different strengths, so they cannot completely
offset each other. This leads to a propagating backward
wave. Therefore, the charge pattern illustrated in Figs.
2(c) and 2(d) is not identical to a CSP. Previously we
called such oscillating charge patterns spoof SPs in [9],
but more precisely we may call them structured SPs, be-
cause the charge patterns have detailed structures and
are mainly determined by the real patterns of the con-
ducting media and because of their similarity (i.e., the
subwavelength characteristic) to the true CSP in Fig.
1(a).

Note that the formation of oscillating charge patterns
in 1D metallic slits or grooves has already been demon-
strated in a number of theoretical and experimental re-
sults in the literature (e.g., [21-25]). In particular, Gay et
al. [26] have directly shown interference in the far field
from oscillating dipoles at the exit side of a finite-
thickness slit-groove structure, but note that the distance
between the slit and groove is greater than the incident
wavelength (d >\), such that the waves emitted from the
two dipoles leads to far-field interference (non-evanescent
waves). Here we provide a straightforward view of the for-
mation mechanism of these charge patterns.

By studying perfect conductors perforated with periodic
hole arrays, Pendry et al. [27] have found that the effec-
tive permittivity has the same plasmon form as CSPs and
thus have proposed the concept of spoof SPs for perfectly
conducting structures. Here we give a concrete picture (or
at least a different view) of the fundamental mechanism
underlying the formation of spoof or structured SPs. Most
importantly, this mechanism is not limited to perfect con-
ductors, but applicable to all conducting structures (in-
cluding finite-conductivity structures). It should be noted
that the original definition of spoof SPs by Pendry et al. is
for surface modes that follow the same plasmon form as
CSPs. This plasmon form may (roughly) apply to 2D hole
arrays, but not necessarily to 1D or other structures (par-
ticularly with finite thickness). Here the structured SPs
we illustrate have broader definitions, referring to any
subwavelength charge patterns induced on structured
conducting surfaces (including non-periodic structures
discussed in Section 6 and perfect conductors). The com-
mon feature of structured SPs is that they lead to evanes-
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cent modes near the surfaces. For periodic structures, the
periodicity of the charge patterns is controlled by the
structures rather than the “natural” wavelength of the
CSP of real metals.

In addition to the CSP model (for finite-conductivity
structures) and the spoof SP model (for perfect conduc-
tors), Lezec and Thio [8] have proposed the composite dif-
fractive evanescent wave (CDEW) model to explain
anomalous light scattering from metallic structures (also
see [28]). From above one may see that these models do
not contradict each other since the underlying mechanism
for these models is the same, i.e., the incident wave in-
duces subwavelength oscillating charge patterns (Thom-
son scattering), which further lead to SP-like evanescent
wave modes near the surface. Thus, we believe our struc-
tured SP picture at least provides a close connection be-
tween the three models.

From Fig. 2 it is not difficult to obtain a general picture
regarding light scattering from structured (or rough) con-
ducting surfaces (either periodic or non-periodic). When
light is incident on a non-planar conducting surface, it
drives the free electrons to move, but the movement can
be impeded by the rough parts (e.g., grooves, holes,
bumps, particles) of the surface to form inhomogeneous
oscillating charges, which become new light sources to
emit wavelets [21]. It is the interference between these
wavelets that may give rise to anomalous reflection or
scattering. In the following, we will numerically prove
this mechanism in the simple and well studied case of pe-
riodic 1D gratings using the rigorous coupled-wave analy-
sis (RCWA) technique [29,30].

3. RCWA OF 1D LATTICE

For monochromatic waves in a nonmagnetic medium (per-
meability u=1), the electric and magnetic fields are
coupled by Maxwell’s equations (in c.g.s. units)

VXE=-;KH, (4)

V x H=iK:E, (5)

where K=27/\ and ¢ is the effective permittivity. The ef-
fective permittivity of a conductor can be expressed as
e.=¢,—14mwo/ o, where g, is the regular permittivity and o
is the conductivity [19]. For perfect conductors, c— so
that Im(e,)— - (which can also be derived from the
Drude model of electrical conduction). The divergence of
Eq. (5) gives V-(¢E)=0, or

V-E=-[(Ve) -El/le=4mp, (6)

where p(r) is the bulk charge density (including both free
and polarization-induced charges). In a modulated me-
dium with varying e(r), Ve #0, which generally leads to
inhomogeneous charge densities p(r) according to Eq. (6).
Mathematically, ¢ is discontinuous across a sharp inter-
face (i.e., Ve—®), so one has to use the surface charge
density 4mp,=JE, to describe the charge distribution on
the interface, where SE, is the jump of the perpendicular
electric field component across the interface. As an excep-
tion, TE-polarization in a 1D structure satisfies p=0
since (Ve)-E=0, so here we ignore it [9].
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From Egs. (4) and (5) one can obtain a second-order dif-
ferential equation V X (¢"1V X H)=K2?H, of which the Fou-
rier transformation form for the 1D lattice in Fig. 3 is

Ksz =- E gm—nkm X kn X Hn, (7)

based on the Fourier expansions &£ 1(x)=3¢,,e % and
H(r)=3H, e " where G,,=27mm/d (m being integers),
é’m:d'lfgs'l(x)eiGmxdx, k, =ky+G,,X, and k; is the for-
ward wavevector [28]. Equationl (7) can be numerically
solved by RCWA. Here we briefly mention its main prin-
ciples to make our calculations convincing.

In Fig. 3, the incident wave is H;, exp(-iK;, r) with
K;,=K(sin 0% +cos 0z). The forward wavevector k, can be
written as kyg=k,X+qz with k¢, =K sin 6, where q is to be
determined by the eigenequation. Then the internal dif-
fracted wavevectors have the form k,,=k,,X+qz with
ko =kor+G,,. Each diffraction order m corresponds to two
diffracted waves Hﬁ exp(—ini ‘r) and HZ; exp(—iKZ;-r)
above and below the grating, respectively. Based on the
conservation of the tangential wavevector components
across the surfaces z,=0 and 7, we have

KL =K% =k, =ko +G,, (always real),

T R (K2 - krznx)l/z for |kmx‘ = K;
K =-K" =
me meT | —i(k2  — K%)Y2 otherwise.
(8)

Here note that when |k,,,| > K, the corresponding exter-
nal waves become evanescent waves
HETo-ikmsx exp[~ (k2 ~K?)2|z|] along +z. In particular,
for normal incidence (k¢,=0) and A>d, all the external
waves except for m=0 are evanescent,
HETo-2mimld oxp[ —2m(m?/d?~1/2\?)Y?|z|]. This is the
mathematical description of the evanescent EM waves of
the structured SP described in Fig. 2.

For TM polarization, all the magnetic fields are parallel
to y. If we retain 2M +1 diffraction orders (0,+1, -, +M),
Eq. (7) can be written as a (2M+1)X(2M+1) matrix
eigenequation. From this eigenequation and the bound-
ary conditions (continuity of the tangential electric and
magnetic fields) at the two surfaces z,=0 and 7, one ob-
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Fig. 3. Geometry of light diffraction from the 1D periodic grat-
ing. The two slit walls are located at x=+W/2 (plus any multiple
of d). The vertical components of the internal wavevectors k,, are
generally complex vectors. X, y, Z are unit vectors along the x, y,
z axes, respectively.
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tains 4M+2 sets of eigenvalues g, and eigenmodes {H;,}
(m=-M, -M+1,---,M, and 1=1,2,---,4M +2) inside the
grating and two sets of external fields {Hffl} and {H ,2} (see
[28-30] for details). Then the zeroth-order reflectivity and
transmissivity are Ro=|HY/H,,|> and To=|HL/H;|?, re-
spectively. Meanwhile, the electric fields E;,, Effl, and E?;l
(parallel to the xz plane) are also obtained from (the Fou-
rier transformation of) Eq. (5). Then the bulk charge den-
sity inside the grating (0 <z < 7) can be calculated from

M 4AM+2
dmp(r)=-i > > (K, E,)exp(-ik},-r), (9)
m=-M 1=1

where k!, =k, X+q,z. The surface charge density is

R

mz + E Einz)
12

(10)

4P (0) = = By M0+ ) e-”*mxx(—

m

on the upper surface z=0 and
dmp )= 3 e'ikmﬂ(Eﬁz -> Ei,,zqz) (11)
m l

on the lower surface z=7, where ¢=e %" and EZ;;
=E',€Z exp(—iK,ﬁZ'r). [For large 7, one may need to make the
substitutions H,,e""—H and H,,—He"" for Im(q,)
>0 to avoid numerical overflow in computing e"'%:7, where
H;, is the corresponding internal wave amplitude at the
lower surface.] For a semi-infinite grating (7— ), only
half of the eigenmodes with Im(q,) <0 are valid, so we
need to use only the boundary conditions at the upper
surface to compute the reflectivity and charge densities.
Overall, RCWA is a first-principle method with the com-
putation precision depending only on the number of dif-
fraction orders (2M +1) retained, but note that it usually
converges more slowly in calculations of charges and near
fields than in calculations of (far-field) reflectivity and
transmissivity.

In calculating the bulk charge density p(x,z) using Eq.
(9), we find that when a large number of diffraction orders
are retained, p(x,z) approaches a delta function across the
walls, which means that “bulk” charges exist only on the
slit walls, i.e., they are also surface charges [9]. Math-
ematically, we let p(x=+W/2,z) represent the surface
charge densities on the slit walls (in arbitrary units).
With sufficient orders retained, this approximation does
not affect the shapes and phases of the real surface
charge density curves on the slit walls.

4. SEMI-INFINITE GRATINGS

In the above RCWA descriptions of light scattering from a
1D (or 2D) lattice, the eigenmodes form pairs, each pair
consisting of two eigenmodes with opposite (complex) ver-
tical wavevectors ¢ and —q. As will be demonstrated later,
one mode propagating along —z corresponds to reflection
from the bottom surface for finite 7. This mode can reso-
nate with the forward-propagating one (along +z). In or-
der to verify the picture in Figs. 2(c) and 2(d) without the
complication of the resonance, we first consider a semi-
infinite grating (7— %) where the backward eigenmodes
do not exist.
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Figure 4(a) shows the reflectivity curve calculated with
RCWA from a semi-infinite gold grating (practically r
>200 um) under normal incidence (with the frequency-
dependent permittivity data of gold taken from [31]). As a
reference, the dashed curve is that of (1-W/d)R, with R,
being the Fresnel reflectivity from a flat gold surface (R
=0.98 in the wavelength range 0.8—10 um) and W the
slit width. Compared with this reference curve, the
anomalous reflection phenomenon from the grating is
obvious. Generally the reflectivity R, is less than (1
-W/d)R;, except that near the Wood’s anomalies A\
=d/|m| (m # 0 being integers), R, is close to unity.

Figure 4(b) shows the charge density function py(x) on
the upper surface (z=0) for an arbitrary wavelength in
the A>d range. This function correctly shows that the in-
cident wave indeed causes significant inhomogeneous
charges on the grating surface with the charges strongly
accumulating near the slit corners, which is excellently
consistent with the charge distribution pattern predicted
in Fig. 2(d). At a time when E;, is toward +x at z=0, we
have predicted in Fig. 2(d) that the phase of the charge
pattern is constant, equal to —7 (negative charges) on the
left half surface W/2<x<d/2, while for d/2<x<d
—W/2, the phase is 0 (positive charges). Figure 4(b) shows
that this prediction is largely correct, except that the cal-
culated phases are slightly displaced from the predicted
phases 0 and 7 by Agp=0.17 in most regions on the sur-
face. The phases near the slit corners are closer to the
predicted values. Our calculations show that the charge
patterns are nearly the same for any wavelength \>1.1d
with no resonance, and the phase shift Ap decreases with
increasing A\, i.e., A¢— 0 for A>d. Therefore, the calcula-
tions indeed confirm the picture of charge accumulation
and oscillation on the subwavelength lattice in Figs. 2(c)
and 2(d). Clearly, the period of the charge pattern in Fig.
4(b) is strictly equal to the lattice constant d and is irrel-
evant to the dispersion property of CSPs in Eq. (1). By
performing RCWA calculations on gratings made of con-

1.0]' T ¢ & &7T& F ¢ ry v vy vt pae ey x v
(a)
« (1-W/d)R; a
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©
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Fig. 4. (Color online) Reflectivity (a) and surface charge densi-
ties (b) of a semi-infinite gold grating with period d=2 um and
slit width W=0.2 um. Normal incidence.
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ductors with Re(e,) >0 or perfect conductors with Im(e,)
— -, we find that the main features of the charge pat-
terns remain unchanged.

To understand the anomalous reflection for A >d in Fig.
4(a), we may simply consider that, as we mentioned be-
fore, the E, wavelet in Fig. 2(d) consists of two contribu-
tions, E,=-(E/+E))%X, with E; corresponding to regular
Fresnel reflection (Ef=—\5RT,fEin) and E, corresponding to
the emission of light from dipole P, along the backward
direction #=0. Without charge accumulation, we have
Ep,=E!=0 and the reflection should obey the Fresnel
theory Ry=(1-W/d)R;. When charges appear at the slit
corners, it can be verified by RCWA that P, is strength-
ened much faster than P, (for W<d/2). Then the effective
strength of Ep, becomes larger than E,. Consequently,
Ep, completely cancels E and also partially offsets Ej.
The net effect is that part of the photons incident on the
metal surfaces are “funneled” into the slit. Thus, the over-
all reflectivity R is smaller than (1-W/d)R,.

When \ is reduced to less than (or close to) the grating
period d, some of the external wavevectors K= _ in Eqgs. (8)
become (or tend to be) real, and the corresponding dif-
fracted waves become non-evanescent. Then the diffrac-
tion effect appears, which can significantly change the re-
flectivity (particularly at the Wood’s anomalies A =d/|m)|).
The details in the diffraction range A <1.1d are discussed
in Appendix A, since they no longer belong to subwave-
length optics. But, it is worth emphasizing again here
that the diffraction effect is absent for the entire long
wavelength range \>1.1d, where the subwavelength
charge patterns are always nearly the same as those in
Fig. 4(b).

5. FINITE-THICKNESS GRATINGS

In Fig. 2 we have indicated that the dipole P, also emits a
wavelet in the slit toward +z [see E, in Fig. 5(a), which
may also include a portion of the incident wave directly
transmitted into the slit]. Because of the waveguide con-
straint, E, tends to be a plane wave inside the slit, i.e.,
E,=E, exp(-ik,z)X, where k,=2x/\. Similarly, this wave
drives electrons on the slit walls to oscillate, resulting in
two SCDWs p, exp(-ik,z) and -p,exp(-ik,z) (with p,
«F,) on the two opposite walls, respectively. The SCDWs
and the E, wave propagate along +z and attenuate gradu-
ally because of the absorption of the conductor. If the grat-
ing is extremely thick, these waves can be completely ab-
sorbed before reaching the bottom surface, which
corresponds to the semi-infinite case.

If the grating is thin enough, the SCDWs on the walls
can reach the exit surface without significant absorption.
Then in a similar way, the moving charges can be im-
peded at the lower slit corners, leading to another large
oscillating dipole Py, as shown in Fig. 5(a) [9]. P, can give
a strong feedback to the upper surface by emitting a
wavelet E, =E, exp(ik,z)X propagating upward. (In other
words, E;, can be considered to be the reflected wave of E,
from the bottom surface.) E, also corresponds to two
SCDWs, =+p, exp(ik,z), on the two walls, respectively,
which are in fact the back-bounced SCDWs of the
+p, exp(—ik,z) waves by the bottom corners. If E; is in
phase with E, at z=0, it enhances P,. The enhanced P,
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Fig. 5. (a) Process of charge-oscillation-induced light emission,
resonance, and transmission through a conducting grating. Re-
flectivity (b) and transmissivity (c) of a gold grating with param-
eters d=2, W=0.2, and 7=4 um.
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subsequently strengthens Ep,, E,, P;, E;, and so on.
Then a Fabry—Perot-like resonant state is formed, with
E, and E, forming a standing wave E,+E;xcos(k,z)e'
in the slit. Under this condition, E, is largely offset by Ep,
in the far fields, leading to minimized backward reflec-
tion. Figure 5(b) shows the zeroth-order reflectivity curve
of a gold grating with thickness 7=4 um. Compared with
Fig. 4(a), one can see that Fig. 5(b) indeed shows a num-
ber of reflection dips corresponding to Fabry—Perot reso-
nance.

At the exit surface z=7 [Fig. 5(a)l, dipoles P, and P,
also emit wavelets toward the outside of the slit. For \
>d, only the wavelets Ep, and E, can propagate along +z
(while the oblique wavelets again form evanescent
waves). Unlike the case above the upper surface where E,
contains specular reflection, here wavelet E, is purely
emitted from dipole P,. For W<d/2, the strength of P,
(Epp) is much greater than that of P, (E,), so the trans-
mitted wave is dominated by Ep,. Consequently, the en-
ergy of the transmitted wave is highly localized near the
exit opening. For long wavelengths A>d, such a “near-
field focusing” effect can achieve a focusing width W far
smaller than \, which has potential applications in nano
focusing, beaming, lithography, imaging, etc. In the far-
field region, however, this localization effect disappears as
the transmitted beam becomes a plane wave for periodic
slit arrays [32]. (For an isolated slit, the transmitted
beam is divergent.) At resonant wavelengths, since the
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strength of wavelet Ep, is maximized, the zeroth-order
transmissivity T is also maximized [9], as can be seen in
Fig. 5(c), where each reflection dip exactly corresponds to
a transmission peak (also see similar results from finite-
difference time-domain calculations in [15]).

If the waves E, and E, are ideal plane waves with
wavevector k,=2m/\, Fabry—Perot resonance should oc-
cur at A\y=27/N (N the resonance order), except that reso-
nant peaks with \y<d are suppressed by the diffraction
effect [9]. However, the actual resonance wavelength is al-
ways redshifted, A\y=27/N+Ap, where the redshift Ay
may vary (slowly) with d, W, 7, and ¢.. One reason for the
redshift is that the standing wave is distorted near the
two ends of the slit [see Fig. 6(b)]. One may refer to [33]
for discussions of other possible mechanisms. Here note
that due to the redshift, the spatial period of the (sinu-
soidal) SCDWs on the wall is less than the incident wave-
length by approximately Ay, i.e., they are also subwave-
length charge waves.

Based on Ay~ 27/N, thick (and highly conducting) grat-
ings (7>d) have many resonance wavelengths in the non-
diffraction range \>d, as experimentally demonstrated
in [34]. Not shown in Fig. 5(b) is that when \ increases
above \{, the transmissivity 7'y first drops to a minimum,
then monotonically increases with N — . This is also true
for very thin gratings with 7<d/2, where the Fabry—
Perot resonance condition cannot be satisfied in the A
>d range. Then T also increase monotonically from \
=d toward the longer wavelength direction [see Fig. 1(a)
in [35]]. The reason is that under these two conditions,
the phase difference between E, and E, (E;,) at z=0 is
roughly 27/\, which decreases toward zero (the “zeroth-
order” Fabry—Perot resonance condition) when A in-
creases toward o.

In Figs. 6(a) and 6(b), the computed charge density dis-
tributions at resonant wavelength \3 are well consistent
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Fig. 6. (Color online) Charge patterns on the thin gold grating.
(a) Charge densities on the two surfaces z,=0 and 7 for the reso-
nant wavelength \3=3.19 um of peak N=3 in Fig. 5. (b) Nearly
standing charge wave on the slit wall x=-W/2 at \3. Note that
the charge waves on the two walls are always identical except for
a phase difference of m, i.e., p(W/2,z)=-p(-W/2,z). (¢c) Surface
charge densities at a non-resonant wavelength A\=3.76 um (cor-
responding to the valley between peaks N=2 and N=3 in Fig. 5).
(d) Charge wave on the slit wall x=-W/2 for A=3.76 um, where
z=0 is no longer an anti-node of the standing wave.
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with the picture of Fig. 5(a). In Fig. 6(a), the two surface
charge patterns |py(x,z2=0, 7)| are very similar to those in
Fig. 4(b), which confirms the existence of the large dipoles
P, and P, in Fig. 5(a). Note that the charge densities in
Figs. 6(a) and 4(b) are in the same (arbitrary) units.
Therefore, the charge densities near the slit corners are
much higher in Fig. 6(a) than in Fig. 4(b) because of the
Fabry—Perot resonance/enhancement. As also shown in
Fig. 6(a), in thin gratings where the attenuation of the
charge density waves on the slit walls is negligible, the
two SCDWs pg(x,z=0,7) are almost identical except that
for odd resonant orders IV, they have a phase difference .
For relatively thicker gratings, the strength of p,(x,z=17)
drops with increasing 7. For 7>200 um, py(x,z=7) almost
disappear while p,(x,z=0) tends to be the same as that in
Fig. 4(b).

Figure 6(b) correctly reveals that on the slit walls, the
charge density waves p(x=+W/2,z) with approximately
stepped phases are nearly standing waves. Here the p
profile also shows high accumulation of charges at the slit
corners (x=+W/2, z=0,7) that are (always) in phase with
ps(x=xW/2,2=0,7) [9].

In Fig. 5(a), if E; is not in phase with E, (and E;,) at
z=0, it suppresses the strengths of P, and Ep, and influ-
ences their phases. Consequently the strengths of the
charge waves on the slit walls are also reduced, leading to
a weaker dipole P, and weak transmissivity. This mecha-
nism is clearly shown in Figs. 6(c) and 6(d) at a non-
resonant wavelength. Compared with Figs. 6(a) and 6(b),
the charge densities at the slit corners (x=+W/2, z=0,7)
all drop significantly for both p and p,, particularly at the
upper corners. Meanwhile, the phases of the charge
waves are also altered so that no resonance is formed. As
stated above, without surface charges, the reflectivity
from the upper surface should be the Fresnel reflectivity
R(=(1-W/d)R. Here one can see from Figs. 6(c) and 6(d)
that at non-resonant wavelengths, the strengths of P,
and P, at the upper surface are very small, and then the
reflectivity Ry in Fig. 5(b) is indeed very close to (1
-W/d)R;=0.9 in most of the non-resonant wavelength
range. For the same wavelength, the non-resonant reflec-
tivity in Fig. 5(b) is much stronger than that in Fig. 4(a),
where charge oscillation is heavily involved. This further
proves the essential role charge oscillation plays in ex-
traordinary light scattering from conducting structures.

As mentioned above, perfect conductors with Im(e,) —
—» and conductors with Re(e.)>0 do not support CPSs.
However, we have demonstrated in [9] that 1D gratings
with Re(e.) >0 may still show similar extraordinary light
transmission, although the transmissivity is relatively
lower (also see [8,10]). Here we use RCWA to simulate the
transmission through a nearly perfectly conducting grat-
ing with a large constant imaginary permittivity e,
=-{107. Based on this value, the wavevector kepin Eq. (1)
is almost identically equal to K, so CSPs should not exist.
However, our calculations show that all the major proper-
ties in this case are almost identical to those of regular
metallic gratings. For example, Fig. 7(a) shows the trans-
missivity curve calculated with the same geometrical pa-
rameters as in Fig. 5(c), while Fig. 7(b) shows the charge
densities on the grating surfaces for the third-order reso-
nance peak. Compared with the reflectivity curve in Fig.
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Fig. 7. (Color online) Simulated light scattering from a nearly
perfectly conducting grating with &.=-i10000 000 (compared
with £,=-2834-71333 for gold at A\=10 um). d=2, W=0.2, and
7=4 um. Normal incidence. (a) Transmissivity curve. Compared
with Fig. 5(c), here the redshifts (Ay) of the resonant wave-
lengths are smaller (so peak N=5 below \=d is truncated). (b)
Surface charge densities at the resonant wavelength A5 in (a).

5(c) and the charge density distribution in Fig. 6(a), Fig. 7
apparently shows that the light scattering mechanisms
for the perfect-conductor case are the same, and thus are
irrelevant to CSPs. The resonant transmissivity peaks
and the charge densities in Fig. 7 are much higher than
those for the gold grating, indicating that high conductiv-
ity can significantly enhance the extraordinary scattering
effects. In fact, the transmission spectra and charge pat-
terns calculated with £,=+10%-7107 are almost identical
to those in Fig. 7 calculated with &.=-i107, indicating
that for highly conducting gratings, the extraordinary
transmission is dominated by the large conductivity-
related Im(e,) and nearly independent of Re(s,) (and its
sign). [In particular, under the condition of &,=+10°
-i107, the CSP excitation condition in Egs. (1) and (2) is
completely destroyed.] Also note that the Ry+7T( values
(not shown in Fig. 7) are always close to unity for A>d,
which means that the ohmic loss for the nearly perfectly
conducting gratings is indeed negligible (<1%).

As demonstrated in [9,36], extraordinary transmission
or scattering through 2D hole arrays involves the same
mechanisms of light emission and interference, except
that the tunneling of the SCDWs through the holes is dif-
ferent and that Fabry-Perot resonance is not involved.
Recently we noted that the surface charge patterns of 2D
hole arrays predicted in [9] had been experimentally dem-
onstrated in [6] for microwaves. The details of oblique in-
cidence geometry will be presented elsewhere, but the
charge oscillation principle is similar.

6. NON-PERIODIC STRUCTURES

From the above demonstrations, it becomes obvious that
charge-oscillation-induced light emission and interference
are a fundamental and universal mechanism underlying
various extraordinary light scattering processes from con-
ducting structures, although these processes may also in-
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volve other mechanisms simultaneously (e.g., cavity reso-
nance). The only basic requirement for this mechanism to
work is that the structure have free electrons. So this
mechanism applies to structures of metals, perfect con-
ductors, conductors with Re(e.)>0, semiconductors, etc.,
but high conductivity can significantly enhance the
anomalous scattering effects.

This mechanism also applies to non-periodic structures
[37]. From Fig. 2(b) one can see that an isolated single slit
also acts as a light source. If the conducting plate has a
finite thickness, the exit opening of the slit at the lower
surface becomes another strong light source at a Fabry—
Perot resonant wavelength, emitting a transmitted beam
below the plate [33]. Compared with the periodic slit ar-
ray in Fig. 5(a), the waves emitted from a single slit have
no interference and thus are completely divergent. If the
slit is surrounded by periodic grooves on the entrance sur-
face, as shown in Fig. 8(a), each groove now acts as a light
source. Under the conditions that the groove period is less
than the incident wavelength and that the Fabry—Perot-
like resonance can be achieved simultaneously in both the
grooves and the slit, the EM fields above the upper sur-
face become similar to those in Fig. 5(a) with the oblique
waves forming evanescent modes. Most importantly, the
enhanced backward wavelets from the light sources [Ep,
in Fig. 5(a)] significantly reduce the Fresnel reflection
(E,). Accordingly, the backward reflection is reduced while
the transmission through the slit can be greatly enhanced
(by up to two orders in [38]). But, the transmitted beam
below the plate is still divergent.

Now if similar grooves are made on the exit surface, the
wavelets emitted from the exit opening of the slit also
drive free electrons to form oscillating dipoles at the
groove openings. Thus, they also become light sources.
Similarly, the oblique wavelets emitted from the slit open-
ing and the grooves on the exit surface tend to form eva-
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Fig. 8. (a) Schematic representation of enhanced light transmis-
sion and directed nanobeaming through a single slit surrounded

by grooves. (b) Transfer of light on a conducting nanowire by sub-
wavelength SCDWs.
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nescent waves, giving rise to a narrow and directed trans-
mitted beam below the slit opening. However, the dipoles
on the upper entrance surface are formed and driven
mainly by the wide incident wave, while those on the exit
surface result only from the wavelets emitted from the di-
pole of the single slit. Therefore, the strengths of the light
sources on the exit surface decrease quickly with increas-
ing distance of the grooves from the slit. Because of this,
the transmitted beam cannot be completely collimated,
since the oblique wavelets cannot be completely sup-
pressed. Meanwhile, the grooves on the exit surface have
little influence on the overall transmission efficiency [38].

Obviously, the picture illustrated in Fig. 8(a) can also
explain enhanced light transmission and directed nano-
beaming through a single aperture surrounded by circu-
lar grooves in the 2D case, except that the cavity reso-
nance mechanisms in the aperture and in the circular
grooves may be different, and the directions and distribu-
tions of the light sources near the groove edges are more
complicated [3].

As another non-peroidic structure example, it is known
that when one end of a conducting nanowire is illumi-
nated by a narrow-wavefront beam (with the electric field
E;, being polarized along the wire), the other end that is
not illuminated can emit light, as schematically illus-
trated in Fig. 8(b). The common explanation of this phe-
nomenon is that light is transferred by CSPs on the wire
surface [39]. However, it is found that this phenomenon is
more pronounced in the low-frequency (e.g., terahertz)
range, where most metals become nearly CSP-free perfect
conductors. In particular, Wang and Mittleman [7] have
experimentally demonstrated that in the terahertz range
(A~1 mm), the wave modes on metallic nanowires have a
dispersion trend that is opposite to that of CSPs.

In fact, according to our charge oscillation picture, the
basic mechanism underlying light transfer on nanowires
is very simple. In Fig. 8(b), the incident wave drives free
electrons near the left input end to oscillate. The agitated
electrons then propagate outside the illumination area to-
ward the right side as a SCDW. At the other end the
propagating charge wave is discontinued, giving rise to a
strong charge accumulation there. The oscillation of these
charges in turn emits new light near the exit end. Mean-
while, the charge wave is bounced back. When the
bounced charge wave is in phase with the forward wave
(and the incident wave) at the input end, Fabry—Perot
resonance occurs. This is very similar to the charge move-
ment on the slit walls in Fig. 5(a). In general, the reso-
nant wavelength here also has a redshift. Accordingly, the
standing charge wave on the wire surface is a subwave-
length wave (d <\), and based on Fig. 1, it generates little
radiation loss when propagating on the wire. The Fabry—
Perot resonance and the subwavelength charge patterns
(proportional to the strengths of the near fields) indeed
have been demonstrated both experimentally and theo-
retically [7,39,40]. Interestingly, our calculations show
that a charge wave propagating in the unilluminated re-
gion of a flat/straight conducting surface (including the
slit wall and the straight wire) is always a subwavelength
SCDW, which indicates that the general SP picture elabo-
rated in the literature, light—subwavelength SCDWs
—light, is indeed correct except that the SCDWs are
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structured SPs and do not necessarily have the exact dis-
persion property of Eq. (1).

According to this picture, the conductivity of the nano-
wire is the dominant factor determining the propagating
distance of the charge waves and the efficiency of light
transfer. This explains the remarkably high transfer effi-
ciency in the long-wavelength range where most metals
are highly conducting. To further confine the near fields
so as to reduce the radiation loss (caused by possible de-
viations of the actual charge waves from ideal subwave-
length standing waves), one may activate charge waves in
grooves and guide them to propagate inside the grooves.
In these cases, the charge waves are channel structured
SPs [41] that may have longer propagating distances.

From Fig. 8(b) it is obvious that to achieve high trans-
fer efficiency, the diameter (vertical dimension) of the
wire should be much smaller than the incident wave-
length so that the agitated charge waves on the top and
bottom of the wire have nearly the same phase. Other-
wise, the charge waves with different phases will quickly
mix together and thus offset each other outside the illu-
minated region, leading to a short propagation distance.
This explains why light transfer is remarkable on nano-
wires. With respect to this effect, it is expected that a thin
conducting slab would be more efficient since it can en-
hance the input coupling efficiency and reduce the electri-
cal resistance without causing phase differences.

Note that in Fig. 2(c), when the moving electrons are
stopped at the slit corners, they also have a tendency to be
bounced back, similar to the moving electrons on the
nanowires in Fig. 8(b) [and on the slit walls in Fig. 5(a)].
The difference in Fig. 2(c) is that the bounced back
charges are suppressed by the incident electric field E;,,
since the driving force provided by E;, is always opposite
to this tendency, while on the nanowire of Fig. 8(b), E;, is
absent except at the input end.

7. SUMMARY

By numerically calculating the SCDWs on gratings, we
have demonstrated that an incident wave can drive free
electrons to accumulate and oscillate near the slit corners
to form new light sources. These light sources then emit
new wavelets. For periodic subwavelength structures (d
<), the oscillating charges form subwavelength charge
patterns (i.e., structured SPs), and the wavelets emitted
from them destructively interfere with each other to form
evanescent wave modes near the surfaces. Usually com-
bined with other mechanisms (e.g., Fabry—Perot or cavity
resonance, waveguiding), the structured SPs can lead to
anomalous light reflection, transmission, or scattering.
The structured SPs are mainly a geometrical effect and
generally do not have the dispersion properties of CSPs.
Note that in the literature, the SP-like modes on conduc-
tors with finite conductivity were widely assumed to be
CSPs, while only those on perfectly conducting structures
were believed to be spoof SPs. Here we have demon-
strated that they are all structured SPs. (For transmis-
sion of acoustic waves through gratings [11,42], the coun-
terpart of charge oscillation is the mechanical vibration of
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the structured medium, particularly near the corners and
edges, that emits acoustic wavelets.)

We also illustrated that the same mechanism of charge-
oscillation-induced light emission and interference ap-
plies to all structures with free electrons (including perfect
conductors and non-periodic structures). Thus, the struc-
tured SP picture represents a basic and universal mecha-
nism of light scattering from conducting nanostructures.
The guideline provided by this mechanism is that in de-
signing novel nano-metamaterial devices, there is no CSP
excitation constraint, but one needs to precisely design
the geometrical parameters of the devices so as to accu-
rately control the locations of the new light sources (in-
cluding maximizing the strength of various resonance
processes if involved) and their interference. Meanwhile,
choosing highly conducting materials is generally another
requirement for enhancing the anomalous scattering ef-
fects.

Finally, the picture presented in this paper also pro-
vides a bridge between light scattering and x ray scatter-
ing (which was already pursued in [28]) so that one can
use the well-established x ray scattering mechanisms to
easily and quickly understand many of the light scatter-
ing phenomena, including light scattering from non-
periodic holes or slits and surface-enhanced Raman scat-
tering.

APPENDIX A

Charge Patterns in the Diffraction Range for 1D
Gratings

One might intuitively think that for normal incidence
with the electric fields E;, parallel to the surface in Fig.
2(c), the charge pattern on the surface should remain the
same even if A <d, as E;, provides the same driving force.
However, the free electrons on the grating surface are
driven by both the incident wave and the wavelets emit-
ted from the charges/dipoles. The latter may significantly
influence the charge distribution (to achieve self-
consistency of the system) when A <d.

Figure 9 shows the charge patterns in the short-
wavelength range (A close to or below d) for the semi-
infinite grating of Fig. 4(a). To understand these patterns,
recall in Section 3 that the +mth-order wave components
(m>0) above the grating can be written as
ERe-2mmild exp(—iKE 2) and EF e2mm¥/d exp(~iKE 2), re-
spectively, for normal incidence, where KT =-27(1/\2
-m?/d?'2. By symmetry, [EE|=|EE |. So these two waves
form a standing wave &, sin(2ﬂ-mx/d)exp(—ingz). Ac-
cordingly, there exists a standing SCDW p; ,,, sin(27mx/d)
corresponding to this wave on the metal surface (but dis-
continued in the slit gap). For A\>d/m, the propagating
factor exp(—inwz) of the €,, wave becomes a decaying
factor exp(-B,/z|) along -z, where p,,=2m(m2/d>
—1/A%)Y2 ig the decaying coefficient. Therefore, the &,
wave is a standing evanescent wave under this condition.
For A\>d (so that A\>d/m), all the &,, waves except for
m=0 are evanescent, so they all have weak strengths.
The charge pattern in Fig. 4(b) is the collective contribu-
tion from a large number of charge wave components
Psm sin(2mmx/d), and this pattern (as well as the collec-

Vol. 27, No. 4/April 2010/J. Opt. Soc. Am. A 727

; 1=201p -
] ]
H
1.
0+ 0
=2 2&
e o
» 19 18
Ry e
(- 0e
21 i 2
1-\’ v 1
oL YV @i f ol
0 1 2 0 1 —x(um)

Fig. 9. (Color online) Diffraction-affected charge densities on
the surface z=0 of a semi-infinite gold grating. d=2 and W
=0.2 um. Dashed lines are the phases. Normal incidence.

tive near fields of the wavelets emitted from the dipoles)
coincides with the grating lattice.

When \ decreases toward d from above, the first-order
€, wave tends to be strengthened as its decaying coeffi-
cient B; decreases. Compared with Fig. 4(b), one can see
in Fig. 9(a) the appearance of the standing SCDW compo-
nent p, ; sin(2mx/d) superimposed on the overall charge
pattern that is similar to that in Fig. 4(b). (Here the
charges are influenced by the near fields even if the £€;
wave is evanescent in the far fields.) Meanwhile, the
phase shift Ap indicated in Fig. 4(b) increases to —0.287
in Fig. 9(a) because of the phase of the complex constant
Ps,1-

The wavelength N=d corresponds to the first-order
Wood’s anomaly [9]. Under this condition, the wavelets
emitted from two adjacent units of the grating along the
horizontal direction 6=7/2 have a phase difference of 27
according to Fig. 2(c), which corresponds to a special
Bragg diffraction condition. Then the strength of the &£;
wave is maximized and becomes outstanding among other
components, as can be verified by RCWA. Therefore, the
charge pattern in Fig. 9(b) is dominated by the corre-
sponding charge wave p; ; sin(2mx/d). Here one (virtual)
node (Node 1) of this standing SCDW is located at (x=0,
z=0), the middle of the slit [while the other node (Node 2)
is at (x=d/2, z=0)]. Node 1 significantly suppresses the
charge densities at the two slit corners (because the nodes
of a standing wave have zero amplitudes), so the strength
of the dipole P, [see Figs. 2(c) and 2(d)] is minimized. As
discussed with respect to Figs. 6(c) and 6(d), when the
strength of P, is very small, the reflectivity should ap-
proach the Fresnel reflectivity (1-W/d)R;. But note that
in Fig. 9(b), the charge pattern p, ; sin(2mx/d) also con-
tributes positively to the reflectivity (equivalent to the in-
crease of E, in Fig. 2(d) although it has a phase difference
=m/2 from the incident wave). This is the reason why in
Fig. 4(a) the reflectivity at Wood’s anomaly wavelengths is
even higher than (1-W/d)R,. Note that the first-order
Wood’s anomaly in Fig. 4(a) is slightly redshifted from d
=2t0 2.01 um.

When A\ decreases to 1.9 um in Fig. 9(c), the £; wave is
still a propagating mode, but its strength decreases as the
diffraction condition deviates from the Bragg condition.
Meanwhile, the pqsin(4mx/d) wave begins to gain
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strength, which modifies the stepped phase profile. When
N further decreases toward d/2 in Fig. 9(d), the
ps,2 sin(4mx/d) wave becomes appreciable. At the second-
order Wood’s anomaly A=1.01 um (also slightly redshifted
from d/2), this wave is maximized [Fig. 9(e)]. For \
<d/2 [Fig. 9(D], the third-order wave p; 3 sin(6mx/d) be-
gins to show strength, and so on. Thin gratings have simi-
lar properties, but these effects are meanwhile mixed
with the resonance in the slits.

Overall, we may call the short-wavelength range \
< 1.1d the diffraction range, where the diffraction effects
of the 1D lattice appear, particularly at the Wood’s
anomalies. In the diffraction process, it is interesting that
the incident energy is largely back-reflected rather than
diffracted, although the corresponding diffracted waves
become non-evanescent, as can be seen from Fig. 4(a).
This is also true in Figs. 5(b) and 5(c) for the thin grating,
where the reflectivity is on average very high in the entire
diffraction range while the transmissivity (particularly at
the Fabry-Perot resonant transmission peaks) is much
lower than that in the non-diffraction range A >1.1d.
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