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General mechanism involved in subwavelength
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Interactions between light and conducting microstructures or nanostructures can result in a variety of novel
phenomena, but their underlying mechanisms have not been completely understood. From calculations of sur-
face charge density waves on conducting gratings and by comparing them with classical surface plasmons, we
revealed a general yet concrete picture regarding the coupling of light to free electron oscillation on structured
conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., structured surface plas-
mons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves.
This principle, usually combined with other mechanisms, is mainly a geometrical effect that can be universally
involved in light scattering from all periodic and non-periodic structures containing free electrons. This picture
may provide clear guidelines for developing conductor-based nano-optical devices. © 2010 Optical Society of
America

OCIS codes: 240.6680, 260.3910, 050.6624.
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. INTRODUCTION
he various novel and unusual optical properties of con-
ucting microstructures or nanostructures, such as
nomalous diffraction from metallic gratings, enhanced
ight transmission through subwavelength slits or holes,
ight polarizing through wire grid polarizers, surface-
nhanced Raman scattering, etc., have attracted tremen-
ous attention in recent years [1–4]. To date, the coupling
f light with surface plasmons (SPs) has been widely
dopted to explain these anomalous phenomena. How-
ver, the SP picture elaborated in numerous case studies
n the literature actually corresponds to a very general
oncept about coupling of electromagnetic (EM) waves to
ree electron oscillation on conducting surfaces that can
enerate evanescent EM wave modes. This big picture is
orrect without doubt, but it is too general for one to ob-
ain a clear and straightforward understanding of the es-
ential underlying mechanism. Because of this uncer-
ainty, the SP-like wave modes have been usually
ssumed to be the same as the classical SPs (CSPs) on
lanar metal surfaces [5], but this assumption is obvi-
usly challenged by the fact that (nearly) perfectly con-
ucting structures that do not support CSPs still have
imilar but stronger anomalous light scattering properties
6,7]. Conductors with positive permittivity do not sup-
ort CSPs either, but they can also exhibit light transmis-
ion anomalies [8–10]. (Extraordinary transmission
1084-7529/10/040718-12/$15.00 © 2
hrough gratings can even occur for acoustic waves [11],
hich is completely irrelevant to SPs.) Because of these

ontradictions, the origin of anomalous light scattering
rom metallic microstructures is still being argued (e.g.,
ee [12–16]).

Using modern computing techniques one may numeri-
ally solve Maxwell’s equations for various complicated
tructures, but in the literature such computations have
een largely focused on the EM fields. Surprisingly, the
etailed mechanisms of free electron oscillation have been
lmost completely ignored, although they are known to
lay the fundamental role in the SP picture. Recently, we
ave briefly reported our computations of surface charge
ensity waves (SCDWs) and the role they play in the pro-
ess of enhanced light transmission through slit and hole
rrays [9]. In this paper, we give a detailed and compre-
ensive illustration of the basic mechanism regarding

ight emission and interference from incident-wave-
riven free electron oscillations, demonstrate that it is in-
olved in light scattering from all periodic and non-
eriodic conducting structures (including perfect
onductors), and thus establish a simple and universal
tructured SP picture. This picture provides a concrete
iew of the general SP concept and may bridge the gaps
etween the different mechanisms argued in the litera-
ure. It also provides solid guidelines for designing nano-
ptical devices by suggesting researchers concentrate on
010 Optical Society of America
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he geometrical parameters of conducting nanostructures
o as to control the locations, strengths, and interference
f the charge-oscillation-induced light sources.

. CHARGE-OSCILLATION-INDUCED LIGHT
MISSION AND INTERFERENCE
o illustrate the main picture, we start from the well-
nown principle of Thomson scattering of x rays by elec-
rons [17,18], in which the incident x rays (EM waves
ith wavelengths �0.1 nm) force the electrons in atoms

not necessarily free electrons) to oscillate with the same
requency. According to the fact that accelerating charges
adiate (an elementary principle of electrodynamics), the
scillating electrons then emit new wavelets, which form
he scattered waves. This effect also exists in the long
avelength range (say ��0.1 �m), where electrons still

scillate with the incident wave (giving rise to oscillating
olarization of the atoms). However, since now � is much
arger than the atoms ��0.1 nm�, the net charge density
veraged on the wavelength scale is zero in the bulk. Net
olarization-induced charges do exist on surfaces (or in-
erfaces), but for non-conducting materials, where the
lectrons are bound to the atoms and cannot move freely,
he formation of net oscillating charges is very small even
n rough surfaces.

A metal has free conduction electrons that move and os-
illate easily on the surface in response to external EM
aves and thus may emit new wavelets. But first note

hat a CSP corresponds to a surface-bound mode on the
etal. If the oscillating charges emit light, how can the
SP be non-radiative? To clarify this ambiguity, let us use

he Otto geometry in Fig. 1(a) as an example [5]. At a spe-
ific incident angle �sp [greater than the critical angle

ig. 1. CSP on a planar metal surface. “�” and “�” represent
ositive and negative charges, respectively. (a) Excitation of the
SP by Otto geometry. The SCDW is the result of electron oscil-

ations (indicated by the dashed arrows) while the positive
harges are fixed. (b) Symmetric sub-wavelets (E1 and E2) from a
eriod of the charge wave (outlined by the dashed lines) along
=0. P1 and P2 represent two oscillating dipoles with opposite
irections, caused by the electron oscillation. (c) Near fields of the
SP (while the far fields tend to zero along any direction).
rcsin�1/np� of the prism–vacuum interface], the incident
ave can excite a CSP, which is a sinusoidal SCDW on the
etal surface with a wavevector

ksp = K�1 + 1/�c�−1/2, �1�

here �c is the permittivity of the metal and K=2� /� (�
he incident wavelength in vacuum). Here �sp must sat-
sfy npK sin �sp=Re�ksp�, where np is the refractive index
f the prism. Under this condition, the incident energy is
argely transferred to the CSP, giving rise to a reflection
ip, as can be proved by Fresnel theory [5].
Note that CSPs can be activated only on metals with

e��c��0 [and meanwhile Im��c� being small] [5]. The
eason is that under this condition, the spatial period of
he CSP satisfies

d = 2�/Re�ksp� � � �2�

ased on Eq. (1). Therefore, the CSP is a subwavelength
harge pattern compared with the incident wavelength �.
onsider each period of the CSP in Fig. 1(a) as a scatter
nit that emits new wavelets. Along any arbitrary direc-
ion ��0, the wavelets emitted from two adjacent units
ave a path difference

�S = d sin � � d � �, �3�

.e., the phase difference is less than 2�. This means that
he oblique wavelets can never be in phase. Thus, they
end to cancel each other out in the far fields. The wave-
ets along the vertical direction �=0, however, are in
hase ��S=0�, but viewed from a single period of the
inusoidal SCDW [Fig. 1(b)], each wavelet consists of two
ub-wavelets with opposite electric fields E1 and E2 that
lso cancel each other out in the far fields. Therefore, all
he emitted wavelets cannot escape the surface along any
irection, so they form an evanescent wave above the sur-
ace [Fig. 1(c)] in the form E exp�−ikspx�exp�−	�z��, where
= �ksp

2 −K2�1/2 is the evanescent factor. This gives a
imple picture why a CSP corresponds to a surface-bound
ode. The CSP can thus propagate outside the prism-

overed region in Fig. 1(a) without radiation loss, and the
ropagation distance depends solely on the absorption of
he metal (ohmic loss).

Here it is obvious that media with Re��c��0 do not sup-
ort CSPs as the wavevector in Eq. (1) cannot satisfy Eq.
2). (Nearly) perfect conductors with ��c�→
 do not sup-
ort CSPs either because ksp→K, d→�, and 	→0, i.e.,
he scattered wave above the conductor surface tends to
e non-evanescent (not closely confined to the surface).
Now we consider in Fig. 2(a) a plane wave incident on a

onducting surface without the prism. For normal inci-
ence, the incident electric field Ein drives free electrons
n the surface to move homogenously. So there is no net
harge, and the reflection obeys the Fresnel equations
19]. [The force exerted by the electric field E of an EM
ave on an electron is −�e�E (e the charge per electron).
ince the motion of free electrons (not the charge waves)

n conductors is much slower than the speed of light (non-
elativistic), the force caused by the magnetic field H of
he wave is negligible.] In Fig. 2(b), a slit (or hole) is
dded. Obviously, the electron movement now can be im-
eded near the slit corner. Here some electrons may move
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ontinuously to the vertical slit wall, but such movement
orresponds to an abrupt 90° deflection (large angular ac-
eleration), while the incident wave does not directly pro-
ide the necessary large driving force. So it is reasonable
o assume that most of the moving electrons are stopped
ear one corner, while positive charges appear at the op-
osite corner because some electrons have moved away.
his leads to the formation of an electric dipole Pa at the
lit opening. Pa oscillates with the incident wave with a
ime factor ei
t (
 the angular frequency of the incident
ave), thus acting as a new light source emitting wavelets

20]. Such a process is in fact a Thomson scattering pro-
ess in the optical frequency range.

Next we apply this process to the one-dimensional (1D)
eriodic slit array in Fig. 2(c). For simplicity, we assume
hat the grating is semi-infinite so that there is no feed-
ack from below. Similar to Fig. 2(b), now each slit be-
omes a light source, but along any oblique direction �
0, the wavelets emitted from two adjacent sources have
path difference �S=d sin �, where d is the period of the

lit array. For an incident wavelength ��d, Eq. (3) is sat-
sfied again. Then the oblique wavelets are canceled in
he far fields (destructive interference, similar to the ab-
ence of x ray diffraction at non-Bragg angles), i.e., they
lso form evanescent waves near the surface. (This prin-
iple can also explain the fact that no light diffraction oc-
urs from a single-crystal lattice, where the lattice con-
tants are much smaller than the wavelength, although
he electrons still oscillate with the incident wave.)

The charge pattern in Fig. 2(c) is similar to that of the
SP in Fig. 1, i.e., they are both subwavelength charge
atterns �d���. However, there are two distinct differ-
nces. First, the CSP is a propagating charge wave with a
pecific wavevector determined by the metal’s permittiv-
ty � in Eq. (1), while the charge pattern in Fig. 2(c) is a

ig. 2. Incident-wave-driven electron movement on (a) a flat
onducting surface with no net charge, (b) a conducting surface
ith a single slit (net charges and their oscillation at the slit cor-
ers giving rise to a radiative light source), and (c) a conducting
urface with a subwavelength slit array. (d) Periodic net charge
attern on the upper surface of (c). All the dipoles and electric
elds have a common oscillating factor ei
t (t the time).
c

tanding wave (but not sinusoidal) with the period always
qual to the grating period d. So the former is an intrinsic
roperty of the metal (depending on �c), while the latter is
geometrical effect that can occur for any incident wave-

ength ��d and for any conducting materials containing
ree electrons (charges) [including perfect conductors and
onductors with Re��c��0]. Second, as mentioned above,
CSP is a complete surface-bound mode. In contrast, the

scillating charge pattern in Fig. 2(c) is radiative along
=0 ��S=0�. This can be seen from Fig. 2(d), where we
ave discarded the oblique evanescent wavelets and
dded the dipoles Pr that are ignored in Fig. 2(c). In ad-
ition to the wavelet EPa emitted from Pa, Pr also emits a
avelet Er along �=0 with a phase that is usually very

lose to that of the Fresnel reflected wave. So here we let
r include Fresnel reflection for convenience in discus-

ions. Then the wavelet emitted from a period consists of
wo sub-wavelets EPa and Er along �=0 with opposite di-
ections (phases). But unlike in Fig. 1(b), EPa and Er gen-
rally have different strengths, so they cannot completely
ffset each other. This leads to a propagating backward
ave. Therefore, the charge pattern illustrated in Figs.
(c) and 2(d) is not identical to a CSP. Previously we
alled such oscillating charge patterns spoof SPs in [9],
ut more precisely we may call them structured SPs, be-
ause the charge patterns have detailed structures and
re mainly determined by the real patterns of the con-
ucting media and because of their similarity (i.e., the
ubwavelength characteristic) to the true CSP in Fig.
(a).
Note that the formation of oscillating charge patterns

n 1D metallic slits or grooves has already been demon-
trated in a number of theoretical and experimental re-
ults in the literature (e.g., [21–25]). In particular, Gay et
l. [26] have directly shown interference in the far field
rom oscillating dipoles at the exit side of a finite-
hickness slit-groove structure, but note that the distance
etween the slit and groove is greater than the incident
avelength �d���, such that the waves emitted from the

wo dipoles leads to far-field interference (non-evanescent
aves). Here we provide a straightforward view of the for-
ation mechanism of these charge patterns.
By studying perfect conductors perforated with periodic

ole arrays, Pendry et al. [27] have found that the effec-
ive permittivity has the same plasmon form as CSPs and
hus have proposed the concept of spoof SPs for perfectly
onducting structures. Here we give a concrete picture (or
t least a different view) of the fundamental mechanism
nderlying the formation of spoof or structured SPs. Most

mportantly, this mechanism is not limited to perfect con-
uctors, but applicable to all conducting structures (in-
luding finite-conductivity structures). It should be noted
hat the original definition of spoof SPs by Pendry et al. is
or surface modes that follow the same plasmon form as
SPs. This plasmon form may (roughly) apply to 2D hole
rrays, but not necessarily to 1D or other structures (par-
icularly with finite thickness). Here the structured SPs
e illustrate have broader definitions, referring to any

ubwavelength charge patterns induced on structured
onducting surfaces (including non-periodic structures
iscussed in Section 6 and perfect conductors). The com-
on feature of structured SPs is that they lead to evanes-
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ent modes near the surfaces. For periodic structures, the
eriodicity of the charge patterns is controlled by the
tructures rather than the “natural” wavelength of the
SP of real metals.
In addition to the CSP model (for finite-conductivity

tructures) and the spoof SP model (for perfect conduc-
ors), Lezec and Thio [8] have proposed the composite dif-
ractive evanescent wave (CDEW) model to explain
nomalous light scattering from metallic structures (also
ee [28]). From above one may see that these models do
ot contradict each other since the underlying mechanism
or these models is the same, i.e., the incident wave in-
uces subwavelength oscillating charge patterns (Thom-
on scattering), which further lead to SP-like evanescent
ave modes near the surface. Thus, we believe our struc-

ured SP picture at least provides a close connection be-
ween the three models.

From Fig. 2 it is not difficult to obtain a general picture
egarding light scattering from structured (or rough) con-
ucting surfaces (either periodic or non-periodic). When
ight is incident on a non-planar conducting surface, it
rives the free electrons to move, but the movement can
e impeded by the rough parts (e.g., grooves, holes,
umps, particles) of the surface to form inhomogeneous
scillating charges, which become new light sources to
mit wavelets [21]. It is the interference between these
avelets that may give rise to anomalous reflection or

cattering. In the following, we will numerically prove
his mechanism in the simple and well studied case of pe-
iodic 1D gratings using the rigorous coupled-wave analy-
is (RCWA) technique [29,30].

. RCWA OF 1D LATTICE
or monochromatic waves in a nonmagnetic medium (per-
eability ��1), the electric and magnetic fields are

oupled by Maxwell’s equations (in c.g.s. units)

� � E = − iKH, �4�

� � H = iK�E, �5�

here K=2� /� and � is the effective permittivity. The ef-
ective permittivity of a conductor can be expressed as
c=�c�− i4�� /
, where �c� is the regular permittivity and �
s the conductivity [19]. For perfect conductors, �→
 so
hat Im��c�→−
 (which can also be derived from the
rude model of electrical conduction). The divergence of
q. (5) gives � · ��E�=0, or

� · E = − ����� · E�/� = 4��, �6�

here ��r� is the bulk charge density (including both free
nd polarization-induced charges). In a modulated me-
ium with varying ��r�, ���0, which generally leads to
nhomogeneous charge densities ��r� according to Eq. (6).

athematically, � is discontinuous across a sharp inter-
ace (i.e., ��→
), so one has to use the surface charge
ensity 4��̃s=�Ez to describe the charge distribution on
he interface, where �Ez is the jump of the perpendicular
lectric field component across the interface. As an excep-
ion, TE-polarization in a 1D structure satisfies ��0
ince ���� ·E=0, so here we ignore it [9].
From Eqs. (4) and (5) one can obtain a second-order dif-
erential equation �� ��−1� �H�=K2H, of which the Fou-
ier transformation form for the 1D lattice in Fig. 3 is

K2Hm = − �
n

�m−nkm � kn � Hn, �7�

ased on the Fourier expansions �−1�x�=��me−iGmx and
�r�=�Hme−ikm·r, where Gm=2�m /d (m being integers),

m=d−1	0
d�−1�x�eiGmxdx, km=k0+Gmx̂, and k0 is the for-

ard wavevector [28]. Equation1 (7) can be numerically
olved by RCWA. Here we briefly mention its main prin-
iples to make our calculations convincing.

In Fig. 3, the incident wave is Hin exp�−iKin·r� with
in=K�sin �x̂+cos �ẑ�. The forward wavevector k0 can be
ritten as k0=k0xx̂+qẑ with k0x=K sin �, where q is to be
etermined by the eigenequation. Then the internal dif-
racted wavevectors have the form km=kmxx̂+qz with
mx=k0x+Gm. Each diffraction order m corresponds to two
iffracted waves Hm

R exp�−iKm
R ·r� and Hm

T exp�−iKm
T ·r�

bove and below the grating, respectively. Based on the
onservation of the tangential wavevector components
cross the surfaces zs=0 and �, we have

Kmx
T = Kmx

R = kmx = k0x + Gm �always real�,

Kmz
T = − Kmz

R = 
�K2 − kmx
2 �1/2 for �kmx� � K,

− i�kmx
2 − K2�1/2 otherwise. �

�8�

Here note that when �kmx � �K, the corresponding exter-
al waves become evanescent waves

m
R,Te−ikmxx exp�−�kmx

2 −K2�1/2�z�� along ±z. In particular,
or normal incidence �k0x=0� and ��d, all the external
aves except for m=0 are evanescent,

m
R,Te−2�imx/d exp�−2��m2 /d2−1/�2�1/2�z��. This is the
athematical description of the evanescent EM waves of

he structured SP described in Fig. 2.
For TM polarization, all the magnetic fields are parallel

o ŷ. If we retain 2M+1 diffraction orders �0, ±1, ¯ , ±M�,
q. (7) can be written as a �2M+1�� �2M+1� matrix
igenequation. From this eigenequation and the bound-
ry conditions (continuity of the tangential electric and
agnetic fields) at the two surfaces zs=0 and �, one ob-

ig. 3. Geometry of light diffraction from the 1D periodic grat-
ng. The two slit walls are located at x= ±W /2 (plus any multiple
f d). The vertical components of the internal wavevectors km are
enerally complex vectors. x̂, ŷ, ẑ are unit vectors along the x, y,
axes, respectively.
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ains 4M+2 sets of eigenvalues qı and eigenmodes �Hm
ı 


m=−M, −M+1, ¯ ,M, and ı=1,2, ¯ ,4M+2) inside the
rating and two sets of external fields �Hm

R 
 and �Hm
T 
 (see

28–30] for details). Then the zeroth-order reflectivity and
ransmissivity are R0= �H0

R /Hin�2 and T0= �H0
T /Hin�2, re-

pectively. Meanwhile, the electric fields Em
ı , Em

R , and Em
T

parallel to the xz plane) are also obtained from (the Fou-
ier transformation of) Eq. (5). Then the bulk charge den-
ity inside the grating �0�z��� can be calculated from

4���r� = − i �
m=−M

M

�
ı=1

4M+2

�km
ı · Em

ı �exp�− ikm
ı · r�, �9�

here km
ı =kmxx̂+qıẑ. The surface charge density is

4��̃s�x� = − Ein,ze
−ik0xx + �

m
e−ikmxx�− Emz

R + �
ı

Emz
ı �

�10�

n the upper surface z=0 and

4��̃s�x� = �
m

e−ikmxx�Emz
T� − �

ı
Emz

ı �ı� �11�

n the lower surface z=�, where �ı=e−iqı� and Emz
T�

Emz
T exp�−iKmz

T ��. [For large �, one may need to make the
ubstitutions Hme−iqı�→Hm

� and Hm→Hm
� eiqı� for Im�qı�

0 to avoid numerical overflow in computing e−iqı�, where

m
� is the corresponding internal wave amplitude at the

ower surface.] For a semi-infinite grating ��→
�, only
alf of the eigenmodes with Im�qı��0 are valid, so we
eed to use only the boundary conditions at the upper
urface to compute the reflectivity and charge densities.
verall, RCWA is a first-principle method with the com-
utation precision depending only on the number of dif-
raction orders �2M+1� retained, but note that it usually
onverges more slowly in calculations of charges and near
elds than in calculations of (far-field) reflectivity and
ransmissivity.

In calculating the bulk charge density ��x ,z� using Eq.
9), we find that when a large number of diffraction orders
re retained, ��x ,z� approaches a delta function across the
alls, which means that “bulk” charges exist only on the

lit walls, i.e., they are also surface charges [9]. Math-
matically, we let ��x= ±W /2 ,z� represent the surface
harge densities on the slit walls (in arbitrary units).
ith sufficient orders retained, this approximation does

ot affect the shapes and phases of the real surface
harge density curves on the slit walls.

. SEMI-INFINITE GRATINGS
n the above RCWA descriptions of light scattering from a
D (or 2D) lattice, the eigenmodes form pairs, each pair
onsisting of two eigenmodes with opposite (complex) ver-
ical wavevectors q and −q. As will be demonstrated later,
ne mode propagating along −z corresponds to reflection
rom the bottom surface for finite �. This mode can reso-
ate with the forward-propagating one (along +z). In or-
er to verify the picture in Figs. 2(c) and 2(d) without the
omplication of the resonance, we first consider a semi-
nfinite grating ��→
� where the backward eigenmodes
o not exist.
Figure 4(a) shows the reflectivity curve calculated with
CWA from a semi-infinite gold grating (practically �
200 �m) under normal incidence (with the frequency-

ependent permittivity data of gold taken from [31]). As a
eference, the dashed curve is that of �1−W /d�Rf, with Rf
eing the Fresnel reflectivity from a flat gold surface (Rf
0.98 in the wavelength range 0.8–10 �m) and W the

lit width. Compared with this reference curve, the
nomalous reflection phenomenon from the grating is
bvious. Generally the reflectivity R0 is less than �1
W /d�Rf, except that near the Wood’s anomalies �
d / �m� (m�0 being integers), R0 is close to unity.
Figure 4(b) shows the charge density function �̃s�x� on

he upper surface �z=0� for an arbitrary wavelength in
he ��d range. This function correctly shows that the in-
ident wave indeed causes significant inhomogeneous
harges on the grating surface with the charges strongly
ccumulating near the slit corners, which is excellently
onsistent with the charge distribution pattern predicted
n Fig. 2(d). At a time when Ein is toward +x at z=0, we
ave predicted in Fig. 2(d) that the phase of the charge
attern is constant, equal to −� (negative charges) on the
eft half surface W /2�x�d /2, while for d /2�x�d
W /2, the phase is 0 (positive charges). Figure 4(b) shows

hat this prediction is largely correct, except that the cal-
ulated phases are slightly displaced from the predicted
hases 0 and � by ���0.1� in most regions on the sur-
ace. The phases near the slit corners are closer to the
redicted values. Our calculations show that the charge
atterns are nearly the same for any wavelength ��1.1d
ith no resonance, and the phase shift �� decreases with

ncreasing �, i.e., ��→0 for ��d. Therefore, the calcula-
ions indeed confirm the picture of charge accumulation
nd oscillation on the subwavelength lattice in Figs. 2(c)
nd 2(d). Clearly, the period of the charge pattern in Fig.
(b) is strictly equal to the lattice constant d and is irrel-
vant to the dispersion property of CSPs in Eq. (1). By
erforming RCWA calculations on gratings made of con-

ig. 4. (Color online) Reflectivity (a) and surface charge densi-
ies (b) of a semi-infinite gold grating with period d=2 �m and
lit width W=0.2 �m. Normal incidence.
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uctors with Re��c��0 or perfect conductors with Im��c�
−
, we find that the main features of the charge pat-

erns remain unchanged.
To understand the anomalous reflection for ��d in Fig.

(a), we may simply consider that, as we mentioned be-
ore, the Er wavelet in Fig. 2(d) consists of two contribu-
ions, Er=−�Ef+Er��x̂, with Ef corresponding to regular
resnel reflection �Ef=−�RfEin� and Er� corresponding to

he emission of light from dipole Pr along the backward
irection �=0. Without charge accumulation, we have
Pa=Er�=0 and the reflection should obey the Fresnel

heory R0= �1−W /d�Rf. When charges appear at the slit
orners, it can be verified by RCWA that Pa is strength-
ned much faster than Pr (for W�d /2). Then the effective
trength of EPa becomes larger than Er�. Consequently,
Pa completely cancels Er� and also partially offsets Ef.
he net effect is that part of the photons incident on the
etal surfaces are “funneled” into the slit. Thus, the over-

ll reflectivity R0 is smaller than �1−W /d�Rf.
When � is reduced to less than (or close to) the grating

eriod d, some of the external wavevectors Kmz
R in Eqs. (8)

ecome (or tend to be) real, and the corresponding dif-
racted waves become non-evanescent. Then the diffrac-
ion effect appears, which can significantly change the re-
ectivity (particularly at the Wood’s anomalies ��d / �m�).
he details in the diffraction range ��1.1d are discussed

n Appendix A, since they no longer belong to subwave-
ength optics. But, it is worth emphasizing again here
hat the diffraction effect is absent for the entire long
avelength range ��1.1d, where the subwavelength

harge patterns are always nearly the same as those in
ig. 4(b).

. FINITE-THICKNESS GRATINGS
n Fig. 2 we have indicated that the dipole Pa also emits a
avelet in the slit toward +z [see Ea in Fig. 5(a), which
ay also include a portion of the incident wave directly

ransmitted into the slit]. Because of the waveguide con-
traint, Ea tends to be a plane wave inside the slit, i.e.,
a�Ea exp�−ikzz�x̂, where kz�2� /�. Similarly, this wave
rives electrons on the slit walls to oscillate, resulting in
wo SCDWs �a exp�−ikzz� and −�a exp�−ikzz� (with �a
Ea) on the two opposite walls, respectively. The SCDWs
nd the Ea wave propagate along +z and attenuate gradu-
lly because of the absorption of the conductor. If the grat-
ng is extremely thick, these waves can be completely ab-
orbed before reaching the bottom surface, which
orresponds to the semi-infinite case.

If the grating is thin enough, the SCDWs on the walls
an reach the exit surface without significant absorption.
hen in a similar way, the moving charges can be im-
eded at the lower slit corners, leading to another large
scillating dipole Pb, as shown in Fig. 5(a) [9]. Pb can give

strong feedback to the upper surface by emitting a
avelet Eb�Eb exp�ikzz�x̂ propagating upward. (In other
ords, Eb can be considered to be the reflected wave of Ea

rom the bottom surface.) Eb also corresponds to two
CDWs, ±�b exp�ikzz�, on the two walls, respectively,
hich are in fact the back-bounced SCDWs of the
�a exp�−ikzz� waves by the bottom corners. If Eb is in
hase with E at z=0, it enhances P . The enhanced P
a a a
ubsequently strengthens EPa, Ea, Pb, Eb, and so on.
hen a Fabry–Perot-like resonant state is formed, with
a and Eb forming a standing wave Ea+Eb�cos�kzz�ei
t

n the slit. Under this condition, Er is largely offset by EPa
n the far fields, leading to minimized backward reflec-
ion. Figure 5(b) shows the zeroth-order reflectivity curve
f a gold grating with thickness �=4 �m. Compared with
ig. 4(a), one can see that Fig. 5(b) indeed shows a num-
er of reflection dips corresponding to Fabry–Perot reso-
ance.
At the exit surface z=� [Fig. 5(a)], dipoles Pb and Pt

lso emit wavelets toward the outside of the slit. For �
d, only the wavelets EPb and Et can propagate along +z

while the oblique wavelets again form evanescent
aves). Unlike the case above the upper surface where Er

ontains specular reflection, here wavelet Et is purely
mitted from dipole Pt. For W�d /2, the strength of Pb
EPb� is much greater than that of Pt �Et�, so the trans-
itted wave is dominated by EPb. Consequently, the en-

rgy of the transmitted wave is highly localized near the
xit opening. For long wavelengths ��d, such a “near-
eld focusing” effect can achieve a focusing width W far
maller than �, which has potential applications in nano
ocusing, beaming, lithography, imaging, etc. In the far-
eld region, however, this localization effect disappears as
he transmitted beam becomes a plane wave for periodic
lit arrays [32]. (For an isolated slit, the transmitted
eam is divergent.) At resonant wavelengths, since the

ig. 5. (a) Process of charge-oscillation-induced light emission,
esonance, and transmission through a conducting grating. Re-
ectivity (b) and transmissivity (c) of a gold grating with param-
ters d=2, W=0.2, and �=4 �m.
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trength of wavelet EPb is maximized, the zeroth-order
ransmissivity T0 is also maximized [9], as can be seen in
ig. 5(c), where each reflection dip exactly corresponds to
transmission peak (also see similar results from finite-

ifference time-domain calculations in [15]).
If the waves Ea and Eb are ideal plane waves with

avevector kz=2� /�, Fabry–Perot resonance should oc-
ur at �N=2� /N (N the resonance order), except that reso-
ant peaks with �N�d are suppressed by the diffraction
ffect [9]. However, the actual resonance wavelength is al-
ays redshifted, �N=2� /N+�N, where the redshift �N
ay vary (slowly) with d, W, �, and �c. One reason for the

edshift is that the standing wave is distorted near the
wo ends of the slit [see Fig. 6(b)]. One may refer to [33]
or discussions of other possible mechanisms. Here note
hat due to the redshift, the spatial period of the (sinu-
oidal) SCDWs on the wall is less than the incident wave-
ength by approximately �N, i.e., they are also subwave-
ength charge waves.

Based on �N�2� /N, thick (and highly conducting) grat-
ngs ���d� have many resonance wavelengths in the non-
iffraction range ��d, as experimentally demonstrated
n [34]. Not shown in Fig. 5(b) is that when � increases
bove �1, the transmissivity T0 first drops to a minimum,
hen monotonically increases with �→
. This is also true
or very thin gratings with ��d /2, where the Fabry–
erot resonance condition cannot be satisfied in the �
d range. Then T0 also increase monotonically from �
d toward the longer wavelength direction [see Fig. 1(a)

n [35]]. The reason is that under these two conditions,
he phase difference between Eb and Ea �Ein� at z=0 is
oughly 2� /�, which decreases toward zero (the “zeroth-
rder” Fabry–Perot resonance condition) when � in-
reases toward 
.

In Figs. 6(a) and 6(b), the computed charge density dis-
ributions at resonant wavelength �3 are well consistent

ig. 6. (Color online) Charge patterns on the thin gold grating.
a) Charge densities on the two surfaces zs=0 and � for the reso-
ant wavelength �3=3.19 �m of peak N=3 in Fig. 5. (b) Nearly
tanding charge wave on the slit wall x=−W /2 at �3. Note that
he charge waves on the two walls are always identical except for

phase difference of �, i.e., ��W /2 ,z��−��−W /2 ,z�. (c) Surface
harge densities at a non-resonant wavelength �=3.76 �m (cor-
esponding to the valley between peaks N=2 and N=3 in Fig. 5).
d) Charge wave on the slit wall x=−W /2 for �=3.76 �m, where
=0 is no longer an anti-node of the standing wave.
ith the picture of Fig. 5(a). In Fig. 6(a), the two surface
harge patterns ��̃s�x ,z=0,��� are very similar to those in
ig. 4(b), which confirms the existence of the large dipoles
a and Pb in Fig. 5(a). Note that the charge densities in
igs. 6(a) and 4(b) are in the same (arbitrary) units.
herefore, the charge densities near the slit corners are
uch higher in Fig. 6(a) than in Fig. 4(b) because of the
abry–Perot resonance/enhancement. As also shown in
ig. 6(a), in thin gratings where the attenuation of the
harge density waves on the slit walls is negligible, the
wo SCDWs �̃s�x ,z=0,�� are almost identical except that
or odd resonant orders N, they have a phase difference �.
or relatively thicker gratings, the strength of �̃s�x ,z=��
rops with increasing �. For ��200 �m, �̃s�x ,z=�� almost
isappear while �̃s�x ,z=0� tends to be the same as that in
ig. 4(b).
Figure 6(b) correctly reveals that on the slit walls, the

harge density waves ��x= ±W /2 ,z� with approximately
tepped phases are nearly standing waves. Here the �
rofile also shows high accumulation of charges at the slit
orners (x= ±W /2, z=0,�) that are (always) in phase with
s�x= ±W /2 ,z=0,�� [9].

In Fig. 5(a), if Eb is not in phase with Ea (and Ein) at
=0, it suppresses the strengths of Pa and EPa and influ-
nces their phases. Consequently the strengths of the
harge waves on the slit walls are also reduced, leading to
weaker dipole Pb and weak transmissivity. This mecha-
ism is clearly shown in Figs. 6(c) and 6(d) at a non-
esonant wavelength. Compared with Figs. 6(a) and 6(b),
he charge densities at the slit corners (x= ±W /2, z=0,�)
ll drop significantly for both � and �̃s, particularly at the
pper corners. Meanwhile, the phases of the charge
aves are also altered so that no resonance is formed. As

tated above, without surface charges, the reflectivity
rom the upper surface should be the Fresnel reflectivity

0= �1−W /d�Rf. Here one can see from Figs. 6(c) and 6(d)
hat at non-resonant wavelengths, the strengths of Pa
nd Pr at the upper surface are very small, and then the
eflectivity R0 in Fig. 5(b) is indeed very close to �1
W /d�Rf�0.9 in most of the non-resonant wavelength
ange. For the same wavelength, the non-resonant reflec-
ivity in Fig. 5(b) is much stronger than that in Fig. 4(a),
here charge oscillation is heavily involved. This further
roves the essential role charge oscillation plays in ex-
raordinary light scattering from conducting structures.

As mentioned above, perfect conductors with Im��c�→

 and conductors with Re��c��0 do not support CPSs.
owever, we have demonstrated in [9] that 1D gratings
ith Re��c��0 may still show similar extraordinary light

ransmission, although the transmissivity is relatively
ower (also see [8,10]). Here we use RCWA to simulate the
ransmission through a nearly perfectly conducting grat-
ng with a large constant imaginary permittivity �c

−i107. Based on this value, the wavevector ksp in Eq. (1)
s almost identically equal to K, so CSPs should not exist.
owever, our calculations show that all the major proper-

ies in this case are almost identical to those of regular
etallic gratings. For example, Fig. 7(a) shows the trans-
issivity curve calculated with the same geometrical pa-

ameters as in Fig. 5(c), while Fig. 7(b) shows the charge
ensities on the grating surfaces for the third-order reso-
ance peak. Compared with the reflectivity curve in Fig.
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(c) and the charge density distribution in Fig. 6(a), Fig. 7
pparently shows that the light scattering mechanisms
or the perfect-conductor case are the same, and thus are
rrelevant to CSPs. The resonant transmissivity peaks
nd the charge densities in Fig. 7 are much higher than
hose for the gold grating, indicating that high conductiv-
ty can significantly enhance the extraordinary scattering
ffects. In fact, the transmission spectra and charge pat-
erns calculated with �c� ±106− i107 are almost identical
o those in Fig. 7 calculated with �c�−i107, indicating
hat for highly conducting gratings, the extraordinary
ransmission is dominated by the large conductivity-
elated Im��c� and nearly independent of Re��c� (and its
ign). [In particular, under the condition of �c�+106

i107, the CSP excitation condition in Eqs. (1) and (2) is
ompletely destroyed.] Also note that the R0+T0 values
not shown in Fig. 7) are always close to unity for ��d,
hich means that the ohmic loss for the nearly perfectly

onducting gratings is indeed negligible ��1%�.
As demonstrated in [9,36], extraordinary transmission

r scattering through 2D hole arrays involves the same
echanisms of light emission and interference, except

hat the tunneling of the SCDWs through the holes is dif-
erent and that Fabry-Perot resonance is not involved.
ecently we noted that the surface charge patterns of 2D
ole arrays predicted in [9] had been experimentally dem-
nstrated in [6] for microwaves. The details of oblique in-
idence geometry will be presented elsewhere, but the
harge oscillation principle is similar.

. NON-PERIODIC STRUCTURES
rom the above demonstrations, it becomes obvious that
harge-oscillation-induced light emission and interference
re a fundamental and universal mechanism underlying
arious extraordinary light scattering processes from con-
ucting structures, although these processes may also in-

ig. 7. (Color online) Simulated light scattering from a nearly
erfectly conducting grating with �c�−i10 000 000 (compared
ith �c=−2834− i1333 for gold at �=10 �m). d=2, W=0.2, and
=4 �m. Normal incidence. (a) Transmissivity curve. Compared
ith Fig. 5(c), here the redshifts ��N� of the resonant wave-

engths are smaller (so peak N=5 below �=d is truncated). (b)
urface charge densities at the resonant wavelength �3 in (a).
olve other mechanisms simultaneously (e.g., cavity reso-
ance). The only basic requirement for this mechanism to
ork is that the structure have free electrons. So this
echanism applies to structures of metals, perfect con-

uctors, conductors with Re��c��0, semiconductors, etc.,
ut high conductivity can significantly enhance the
nomalous scattering effects.
This mechanism also applies to non-periodic structures

37]. From Fig. 2(b) one can see that an isolated single slit
lso acts as a light source. If the conducting plate has a
nite thickness, the exit opening of the slit at the lower
urface becomes another strong light source at a Fabry–
erot resonant wavelength, emitting a transmitted beam
elow the plate [33]. Compared with the periodic slit ar-
ay in Fig. 5(a), the waves emitted from a single slit have
o interference and thus are completely divergent. If the
lit is surrounded by periodic grooves on the entrance sur-
ace, as shown in Fig. 8(a), each groove now acts as a light
ource. Under the conditions that the groove period is less
han the incident wavelength and that the Fabry–Perot-
ike resonance can be achieved simultaneously in both the
rooves and the slit, the EM fields above the upper sur-
ace become similar to those in Fig. 5(a) with the oblique
aves forming evanescent modes. Most importantly, the
nhanced backward wavelets from the light sources [EPa
n Fig. 5(a)] significantly reduce the Fresnel reflection
Er�. Accordingly, the backward reflection is reduced while
he transmission through the slit can be greatly enhanced
by up to two orders in [38]). But, the transmitted beam
elow the plate is still divergent.
Now if similar grooves are made on the exit surface, the

avelets emitted from the exit opening of the slit also
rive free electrons to form oscillating dipoles at the
roove openings. Thus, they also become light sources.
imilarly, the oblique wavelets emitted from the slit open-

ng and the grooves on the exit surface tend to form eva-

ig. 8. (a) Schematic representation of enhanced light transmis-
ion and directed nanobeaming through a single slit surrounded
y grooves. (b) Transfer of light on a conducting nanowire by sub-
avelength SCDWs.
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escent waves, giving rise to a narrow and directed trans-
itted beam below the slit opening. However, the dipoles

n the upper entrance surface are formed and driven
ainly by the wide incident wave, while those on the exit

urface result only from the wavelets emitted from the di-
ole of the single slit. Therefore, the strengths of the light
ources on the exit surface decrease quickly with increas-
ng distance of the grooves from the slit. Because of this,
he transmitted beam cannot be completely collimated,
ince the oblique wavelets cannot be completely sup-
ressed. Meanwhile, the grooves on the exit surface have
ittle influence on the overall transmission efficiency [38].

Obviously, the picture illustrated in Fig. 8(a) can also
xplain enhanced light transmission and directed nano-
eaming through a single aperture surrounded by circu-
ar grooves in the 2D case, except that the cavity reso-
ance mechanisms in the aperture and in the circular
rooves may be different, and the directions and distribu-
ions of the light sources near the groove edges are more
omplicated [3].

As another non-peroidic structure example, it is known
hat when one end of a conducting nanowire is illumi-
ated by a narrow-wavefront beam (with the electric field
in being polarized along the wire), the other end that is
ot illuminated can emit light, as schematically illus-
rated in Fig. 8(b). The common explanation of this phe-
omenon is that light is transferred by CSPs on the wire
urface [39]. However, it is found that this phenomenon is
ore pronounced in the low-frequency (e.g., terahertz)

ange, where most metals become nearly CSP-free perfect
onductors. In particular, Wang and Mittleman [7] have
xperimentally demonstrated that in the terahertz range
��1 mm�, the wave modes on metallic nanowires have a
ispersion trend that is opposite to that of CSPs.
In fact, according to our charge oscillation picture, the

asic mechanism underlying light transfer on nanowires
s very simple. In Fig. 8(b), the incident wave drives free
lectrons near the left input end to oscillate. The agitated
lectrons then propagate outside the illumination area to-
ard the right side as a SCDW. At the other end the
ropagating charge wave is discontinued, giving rise to a
trong charge accumulation there. The oscillation of these
harges in turn emits new light near the exit end. Mean-
hile, the charge wave is bounced back. When the
ounced charge wave is in phase with the forward wave
and the incident wave) at the input end, Fabry–Perot
esonance occurs. This is very similar to the charge move-
ent on the slit walls in Fig. 5(a). In general, the reso-
ant wavelength here also has a redshift. Accordingly, the
tanding charge wave on the wire surface is a subwave-
ength wave �d���, and based on Fig. 1, it generates little
adiation loss when propagating on the wire. The Fabry–
erot resonance and the subwavelength charge patterns

proportional to the strengths of the near fields) indeed
ave been demonstrated both experimentally and theo-
etically [7,39,40]. Interestingly, our calculations show
hat a charge wave propagating in the unilluminated re-
ion of a flat/straight conducting surface (including the
lit wall and the straight wire) is always a subwavelength
CDW, which indicates that the general SP picture elabo-
ated in the literature, light→subwavelength SCDWs

light, is indeed correct except that the SCDWs are
tructured SPs and do not necessarily have the exact dis-
ersion property of Eq. (1).
According to this picture, the conductivity of the nano-

ire is the dominant factor determining the propagating
istance of the charge waves and the efficiency of light
ransfer. This explains the remarkably high transfer effi-
iency in the long-wavelength range where most metals
re highly conducting. To further confine the near fields
o as to reduce the radiation loss (caused by possible de-
iations of the actual charge waves from ideal subwave-
ength standing waves), one may activate charge waves in
rooves and guide them to propagate inside the grooves.
n these cases, the charge waves are channel structured
Ps [41] that may have longer propagating distances.
From Fig. 8(b) it is obvious that to achieve high trans-

er efficiency, the diameter (vertical dimension) of the
ire should be much smaller than the incident wave-

ength so that the agitated charge waves on the top and
ottom of the wire have nearly the same phase. Other-
ise, the charge waves with different phases will quickly
ix together and thus offset each other outside the illu-
inated region, leading to a short propagation distance.
his explains why light transfer is remarkable on nano-
ires. With respect to this effect, it is expected that a thin

onducting slab would be more efficient since it can en-
ance the input coupling efficiency and reduce the electri-
al resistance without causing phase differences.

Note that in Fig. 2(c), when the moving electrons are
topped at the slit corners, they also have a tendency to be
ounced back, similar to the moving electrons on the
anowires in Fig. 8(b) [and on the slit walls in Fig. 5(a)].
he difference in Fig. 2(c) is that the bounced back
harges are suppressed by the incident electric field Ein,
ince the driving force provided by Ein is always opposite
o this tendency, while on the nanowire of Fig. 8(b), Ein is
bsent except at the input end.

. SUMMARY
y numerically calculating the SCDWs on gratings, we
ave demonstrated that an incident wave can drive free
lectrons to accumulate and oscillate near the slit corners
o form new light sources. These light sources then emit
ew wavelets. For periodic subwavelength structures �d
��, the oscillating charges form subwavelength charge

atterns (i.e., structured SPs), and the wavelets emitted
rom them destructively interfere with each other to form
vanescent wave modes near the surfaces. Usually com-
ined with other mechanisms (e.g., Fabry–Perot or cavity
esonance, waveguiding), the structured SPs can lead to
nomalous light reflection, transmission, or scattering.
he structured SPs are mainly a geometrical effect and
enerally do not have the dispersion properties of CSPs.
ote that in the literature, the SP-like modes on conduc-

ors with finite conductivity were widely assumed to be
SPs, while only those on perfectly conducting structures
ere believed to be spoof SPs. Here we have demon-

trated that they are all structured SPs. (For transmis-
ion of acoustic waves through gratings [11,42], the coun-
erpart of charge oscillation is the mechanical vibration of
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he structured medium, particularly near the corners and
dges, that emits acoustic wavelets.)

We also illustrated that the same mechanism of charge-
scillation-induced light emission and interference ap-
lies to all structures with free electrons (including perfect
onductors and non-periodic structures). Thus, the struc-
ured SP picture represents a basic and universal mecha-
ism of light scattering from conducting nanostructures.
he guideline provided by this mechanism is that in de-
igning novel nano-metamaterial devices, there is no CSP
xcitation constraint, but one needs to precisely design
he geometrical parameters of the devices so as to accu-
ately control the locations of the new light sources (in-
luding maximizing the strength of various resonance
rocesses if involved) and their interference. Meanwhile,
hoosing highly conducting materials is generally another
equirement for enhancing the anomalous scattering ef-
ects.

Finally, the picture presented in this paper also pro-
ides a bridge between light scattering and x ray scatter-
ng (which was already pursued in [28]) so that one can
se the well-established x ray scattering mechanisms to
asily and quickly understand many of the light scatter-
ng phenomena, including light scattering from non-
eriodic holes or slits and surface-enhanced Raman scat-
ering.

PPENDIX A
harge Patterns in the Diffraction Range for 1D
ratings
ne might intuitively think that for normal incidence
ith the electric fields Ein parallel to the surface in Fig.
(c), the charge pattern on the surface should remain the
ame even if ��d, as Ein provides the same driving force.
owever, the free electrons on the grating surface are
riven by both the incident wave and the wavelets emit-
ed from the charges/dipoles. The latter may significantly
nfluence the charge distribution (to achieve self-
onsistency of the system) when ��d.

Figure 9 shows the charge patterns in the short-
avelength range (� close to or below d) for the semi-

nfinite grating of Fig. 4(a). To understand these patterns,
ecall in Section 3 that the ±mth-order wave components
m�0� above the grating can be written as

m
R e−2�imx/d exp�−iKmz

R z� and E−m
R e2�imx/d exp�−iKmz

R z�, re-
pectively, for normal incidence, where Kmz

R =−2��1/�2

m2 /d2�1/2. By symmetry, �Em
R �= �E−m

R �. So these two waves
orm a standing wave Em sin�2�mx /d�exp�−iKmz

R z�. Ac-
ordingly, there exists a standing SCDW �̃s,m sin�2�mx /d�
orresponding to this wave on the metal surface (but dis-
ontinued in the slit gap). For ��d /m, the propagating
actor exp�−iKmz

R z� of the Em wave becomes a decaying
actor exp�−	m�z�� along −z, where 	m=2��m2 /d2

1/�2�1/2 is the decaying coefficient. Therefore, the Em
ave is a standing evanescent wave under this condition.
or ��d (so that ��d /m), all the Em waves except for
=0 are evanescent, so they all have weak strengths.

he charge pattern in Fig. 4(b) is the collective contribu-
ion from a large number of charge wave components

sin�2�mx /d�, and this pattern (as well as the collec-
s,m
ive near fields of the wavelets emitted from the dipoles)
oincides with the grating lattice.

When � decreases toward d from above, the first-order
1 wave tends to be strengthened as its decaying coeffi-
ient 	1 decreases. Compared with Fig. 4(b), one can see
n Fig. 9(a) the appearance of the standing SCDW compo-
ent �̃s,1 sin�2�x /d� superimposed on the overall charge
attern that is similar to that in Fig. 4(b). (Here the
harges are influenced by the near fields even if the E1
ave is evanescent in the far fields.) Meanwhile, the
hase shift �� indicated in Fig. 4(b) increases to −0.28�
n Fig. 9(a) because of the phase of the complex constant
s,1.

The wavelength �=d corresponds to the first-order
ood’s anomaly [9]. Under this condition, the wavelets

mitted from two adjacent units of the grating along the
orizontal direction �=� /2 have a phase difference of 2�
ccording to Fig. 2(c), which corresponds to a special
ragg diffraction condition. Then the strength of the E1
ave is maximized and becomes outstanding among other

omponents, as can be verified by RCWA. Therefore, the
harge pattern in Fig. 9(b) is dominated by the corre-
ponding charge wave �̃s,1 sin�2�x /d�. Here one (virtual)
ode (Node 1) of this standing SCDW is located at (x=0,
=0), the middle of the slit [while the other node (Node 2)
s at (x=d /2, z=0)]. Node 1 significantly suppresses the
harge densities at the two slit corners (because the nodes
f a standing wave have zero amplitudes), so the strength
f the dipole Pa [see Figs. 2(c) and 2(d)] is minimized. As
iscussed with respect to Figs. 6(c) and 6(d), when the
trength of Pa is very small, the reflectivity should ap-
roach the Fresnel reflectivity �1−W /d�Rf. But note that
n Fig. 9(b), the charge pattern �̃s,1 sin�2�x /d� also con-
ributes positively to the reflectivity (equivalent to the in-
rease of Er� in Fig. 2(d) although it has a phase difference
� /2 from the incident wave). This is the reason why in
ig. 4(a) the reflectivity at Wood’s anomaly wavelengths is
ven higher than �1−W /d�Rf. Note that the first-order
ood’s anomaly in Fig. 4(a) is slightly redshifted from d
2 to 2.01 �m.
When � decreases to 1.9 �m in Fig. 9(c), the E1 wave is

till a propagating mode, but its strength decreases as the
iffraction condition deviates from the Bragg condition.
eanwhile, the �̃ sin�4�x /d� wave begins to gain

ig. 9. (Color online) Diffraction-affected charge densities on
he surface z=0 of a semi-infinite gold grating. d=2 and W
0.2 �m. Dashed lines are the phases. Normal incidence.
s,2
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trength, which modifies the stepped phase profile. When
further decreases toward d /2 in Fig. 9(d), the

s,2 sin�4�x /d� wave becomes appreciable. At the second-
rder Wood’s anomaly �=1.01 �m (also slightly redshifted
rom d /2), this wave is maximized [Fig. 9(e)]. For �

d /2 [Fig. 9(f)], the third-order wave �̃s,3 sin�6�x /d� be-
ins to show strength, and so on. Thin gratings have simi-
ar properties, but these effects are meanwhile mixed
ith the resonance in the slits.
Overall, we may call the short-wavelength range �
1.1d the diffraction range, where the diffraction effects

f the 1D lattice appear, particularly at the Wood’s
nomalies. In the diffraction process, it is interesting that
he incident energy is largely back-reflected rather than
iffracted, although the corresponding diffracted waves
ecome non-evanescent, as can be seen from Fig. 4(a).
his is also true in Figs. 5(b) and 5(c) for the thin grating,
here the reflectivity is on average very high in the entire
iffraction range while the transmissivity (particularly at
he Fabry-Perot resonant transmission peaks) is much
ower than that in the non-diffraction range ��1.1d.
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