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Abstract. Within the Landauer framework of ballistic transport, we theoretically investigate spin-
dependent resonant transmission and magnetoresistance in symmetric cascade junctions of ferromagnetic
metal (FM) and semiconductor (SC). It is shown that spin-up and spin-down electrons possess different
bandgap structures against the Rashba spin-orbit wave vector. Due to the mirror symmetry, multiple
spin-dependent perfect transmissions of electrons can be obtained within the bandgap, thereafter, spin
polarization has multiple reversals. Around each resonant wave vector, high spin polarization is achieved
and the electrical conductance comes from one kind of spin electrons. The resonant transmissions originate
from the spin-dependent quasi-bound states at energies above the potential barriers, which are demon-
strated by the electronic charge distributions in the system. Furthermore, if we change the magnetization
of FM in the centre of the junctions, inverse magnetoresistance can be observed. The investigations may
have potential applications in spin filters and spin switches.

1 Introduction

Motivated by the pioneer work of Datta and Das [1], much
attention has been paid to the spin-polarized transport in
spin field-effect transistor. In such a system, ferromagnetic
metals (FMs) are used as spin injector and detector, and
in between there is a semiconductor (SC) to tune the spin
precession. The Rashba spin-orbit coupling (SOC) in semi-
conductor can lead to different spin precessions for spin-
up and spin-down electrons [2–8]. The strength of Rashba
SOC can be controlled by a gate voltage applied on the
semiconductor. It has been reported in experiments that
injection of spin-polarized current in FM/SC systems is
being constantly improved at room temperature [9–12].
Recently, quantum spin-valve, spin-switching and spin-
filtering effects have been found in the FM/SC/FM junc-
tion [13–19]. These investigations make it possible to ma-
nipulate the spin-polarized transport by designing FM/SC
junctions, and use them as spintronic devices.

On the other hand, it is known that in quantum con-
fined systems, the bound states at energies above the po-
tential wells (or barriers) can induce resonant transmis-
sions within the electronic bandgap [20–23]. By designing
various potential, wavefunctions and electronic properties
of the materials can be tuned, which can be applied in en-
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ergy bandgap engineering. Meanwhile in random polymer
systems, the internal symmetry can lead to resonant trans-
mission of electrons. This phenomenon was first predicted
by Dunlap et al. in one-dimensional random-dimer (RD)
model [24] and has been experimentally demonstrated in
RD GaAs-AlGaAs superlattice [25]. Similar resonant phe-
nomena have been found in various correlated disorder
systems [26,27]. Physically, the internal symmetry induces
the extended electronic states, thereafter, resonant trans-
mission of electrons is observed in those systems. As an
analog, the internal symmetry has induced perfect trans-
missions of electromagnetic waves in dielectric microstruc-
tures, which has achieved applications on the wavelength
division multiplexing system [28,29].

In this work, we study how the mirror symmetry af-
fects the spin-dependent transport of electrons in FM/SC
cascade junctions. It is shown that multiple perfect trans-
missions for spin-up or spin-down electrons are found
within the bandgap against the Rashba spin-orbit wave
vector. Both the wave vector and the mode number of
resonant transmissions therein can be tuned. Around res-
onant wave vector, high spin polarization is achieved and
electrical conductance is contributed only by single spin
state. The resonant transmissions originate from the spin-
dependent quasi-bound states at energies above the po-
tential barriers. Furthermore, inverse magnetoresistance is
found in the system. This paper is organized as following.
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In Section 2, we present the analytical analysis of spin-
dependent transport in the FM/SC cascade junctions
with a mirror symmetry based on the transfer matrix
method. In Section 3, the spin-dependent transmission,
spin polarization and the electric conductance are cal-
culated numerically. The physical origin of the spin-
dependent resonant phenomena is discussed based on the
electronic charge distribution of the system. In Section 4,
the effect of inverse magnetoresistance is discussed in the
SCJ. A brief summary is given in Section 5.

2 The theoretical analysis

In the Landauer formalism of ballistic transport [30], we
consider spin-dependent transport of electrons through a
FM/SC symmetric cascade junction (SCJ) constructed as

S(m, n) = (FM/SC)m(SC)n(SC/FM)m, (1)

where m and n are the repeated numbers of the units (as
schematically shown in Fig. 1a). Figure 1b plots the con-
duction band diagram in the SCJ of S(5, 0). To achieve
the SCJ, one can carve grooves on top of a near-surface
2DEG formed in semiconductor heterostructures, and fill
in the grooves by deposing an FM material. The SCJ
quasi-one-dimensional waveguide can be obtained by con-
fining in the z-direction. Suppose that spin transport
along the x-axis in a quasi-one-dimensional waveguide,
which is composed of the SCJ shown in equation (1).
And electrons are confined in the y-direction by an asym-
metric quantum well in the semiconductor, where the
Rashba SOC exists. In practice, one may tune the Rashba
SOC via spatially distributed gates, which can be made
on top of semiconductor by micro-fabrication technique,
for example, E-beam lithography [31]. In each FM layer,
a Stoner-Wohlfarth-like model of magnetization is ex-
ploited, then the energy offset between the spin-up and
spin-down bands can be set as the exchange splitting en-
ergy Δ. The orientation of the magnetization is along the
z-direction. Based on the one-band effective-mass approx-
imation, the Hamiltonians in the FM and SC regions can
be written as

Ĥf =
1
2
p̂x

1
m∗

f

p̂x +
1
2
Δσz , (2)

and

Ĥs =
1
2
p̂x

1
m∗

s

p̂x +
1
2�
σz [p̂xαR + αRp̂x] + δE, (3)

respectively. Here m∗
f and m∗

s are the effective masses
of electrons in the FM and SC, respectively. σz denotes
the spin Pauli matrices, αR is the spin-orbit Rashba pa-
rameter, and δE is the conduction-band mismatch be-
tween SC and FM. It should be noted that, because of
the conduction-band mismatch in a realistic FM/SC junc-
tion, increasing the spin polarization in FM helps little to
increase spin-injection rate unless the spin polarization
in FM approaches 100% [32]. Due to the fact that the

Hamiltonians shown in equations (2) and (3) are spin di-
agonal, the electronic eigenstates in the system have the
form of |Ψ↑〉 = [ψ↑(x), 0] and |Ψ↓〉 = [0, ψ↓(x)]. By using
the continuous conditions, the transfer matrix from FM
to SC layers has the form of

TFS =
1

2Ks

(
ησ+ ησ−
ησ− ησ+

)
, (4)

while the transfer matrix from SC to FM layers can be
expressed by:

TSF =
1

2μkf
Fσ

(
ησ+ −ησ−
−ησ− ησ+

)
. (5)

Here

Ks = ks
Fσ + λσKR

=

√
(KR)2 + μ(kf

Fσ)2 − 2m∗
s

�2
(δE − 1

2
λσΔ),

which can be achieved by energy conservation in the sys-
tem, and ησ± = (Ks ± μkf

Fσ). ks
Fσ and kf

Fσ are the
Fermi wave vectors in the SC and FM regions, respec-
tively, μ = m∗

s/m
∗
f , KR = m∗

sαR/�
2, and λ↑,↓ = ±1.

The electronic propagation within the FM layer can be
described by matrix TF ,

TF =

(
eikf

F σdf 0
0 e−ikf

F σdf

)
, (6)

and the electronic propagation within the SC layer can be
written as

TS =
(
eiks

F,+σds 0
0 e−iks

F,−σds

)
, (7)

where +σ (or −σ) indicates the same (or opposite) spin
state with σ. df is the thickness of each FM layer, and
ds is the thickness of each SC layer. In the following cal-
culations, the thicknesses of FM and SC have been set
as df = 1 nm and ds = 0.1 μm, respectively. By this
assumption, the length of the whole system is about sev-
eral micrometers, and we can carry out theoretical inves-
tigation in the Landauer formalism of ballistic transport.
Therefore, the whole system is represented by a product
matrix M , relating the incident and reflection waves to
the transmission wave. The transmission coefficient of the
electron with the spin state σ through the whole SCJ can
be described by:

Tσ =

(
kf,L

Fσ

kf,R
Fσ

) ∣∣∣∣ 1
M22

∣∣∣∣
2

, (8)

where kf,L
Fσ and kf,R

Fσ are the Fermi wave vectors in the 1st
and the Nth FM electrodes, respectively. Here N is the
total number of units in the SCJ. Mij(i, j = 1, 2) are the
elements of the product matrix M .

It is necessary to pay attention to the prod-
uct transfer matrix through the SCJ, i.e., M . In
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Fig. 1. (Color online) (a) shows schematically a FM/SC sym-
metric cascade junction (SCJ) given by equation (1), where
a gate voltage (Vg) tunes the Rashba spin-orbit coupling.
(b) Conduction band diagram in the SCJ of S(5, 0).

the SCJ, the FM and SC layers are arranged as
“(FM/SC)m(SC)n(SC/FM)m”. If we define the transfer
matrices ML and MR as

ML = TSFTSTFSTF =
(
u v
w x

)
, (9)

and

MR = TFTSFTSTFS =
(
u −w
−v x

)
, (10)

respectively, the product transfer matrix of SCJ of
S(m, n) can be written as

M(m) = MLM(m− 1)MR =
(
Gm Hm

−Hm Fm

)
, (11)

where Gm = u2Gm−1 − 2uvHm−1 − v2Fm−1, Hm =
−wuGm−1+(wv+xu)Hm−1+xvFm−1, Fm = −w2Gm−1+
2wxHm−1 + x2Fm−1 for m > 1. In the case of m = 1,
G1 = η2

σ+e
iks

F,+σ(n+2)ds − η2
σ−e

−iks
F,−σ(n+2)ds , H1 =

ησ+ησ−eiks
F,+σ(n+2)ds − ησ+ησ−e−iks

F,−σ(n+2)ds , and F1 =
η2

σ+e
−iks

F,−σ(n+2)ds − η2
σ−e

iks
F,+σ(n+2)ds .

Because there exists mirror symmetry in the SCJ, we
can easily find the conditions for the perfect transmission,
i.e., once

|M22| = |Fm| = 1 (12)

is satisfied, perfect transmissions can be obtained in the
SCJ. Here the magnetizations in ferromagnetic layers
are in parallel alignment. It should be mentioned that
equation (12) can be generally used in the FM/SC cas-
cade junctions with a mirror symmetry. Interestingly, the
SCJ has several advantages in tuning perfect transmis-
sions as following. (i) The bandgap for spin-up (or spin-
down) electrons is achieved because of the substructures
of (FM/SC)m and (SC/FM)m in the SCJ. (ii) An inter-
nal symmetry exists in the structure, which is expected to
induce the perfect transmissions. And the perfect trans-
missions are spin-dependent. The central parts (SC)n in

the SCJ can tune the number and the wave vector of the
perfect transmission peaks due to the phase modulation
of electronic wavefunctions. (iii) The quality factor of per-
fect transmission peaks will be enhanced by increasing
the number of the substructures, i.e., (FM/SC)m and
(SC/FM)m, due to multiple scatterings of electrons in
the substructures.

Once the spin-dependent transmission coefficient Tσ is
achieved, the spin polarization (P ) and the conductance
(G) [30] of the system can be achieved by:

P = (T↑ − T↓)/(T↑ + T↓) (13)

and
G = (e2/h)(T↑ + T↓), (14)

respectively.
Usually the spin polarization in a tunnel junction can

form the tunneling magnetoresistance (TMR). In order to
evaluate TMR in the SCJ, we change the magnetization
of FM in the centre of SCJ. Then the TMR can be defined
as

TMR = (G↑↑ −G↑↓)/G↑↑, (15)

where G↑↑ and G↑↓ represent the tunnel conductance of
the SCJ for parallel and antiparallel alignments of the
magnetizations in ferromagnetic layers, respectively.

3 The resonant transmission in SCJs

We have calculated the spin-dependent transmission co-
efficient as a function of Rashba spin-orbit wave vec-
tor in the FM/SC SCJs for parallel magnetization. Fig-
ures 2a−2c show the transmission spectra in the SCJs
of S(5, n) with different n. There are several interesting
features. First, due to the substructure of (FM/SC)5 and
(SC/FM)5 in the SCJ, there is a spin-dependent bandgap
structure against the Rashba spin-orbit wave vector. Sec-
ond, there exist perfect transmission peaks in the bandgap
for spin-up or spin-down electrons. However, the resonant
wave vectors for spin-up and spin-down electrons are sep-
arated. Third, the central part (SC)n determines the peak
number and the wave vector of perfect transmission peaks
in the bandgap for each spin state of electrons. We find
that more and more perfect transmission peaks for spin-
up or spin-down electrons appear in the bandgap by in-
creasing n. For example, there is one peak for spin-up or
spin-down electrons in the bandgap when n = 0 (as shown
in Fig. 2a). There are two peaks for spin-up or spin-down
electrons in the bandgap when n = 4 (as shown in Fig. 2b).
And three peaks for spin-up or spin-down electrons appear
in the bandgap when n = 8 (as shown in Fig. 2c). Physi-
cally, with increasing the length of SC channel in the cen-
tre of the SCJ, phase shift for each spin state is enlarged
when the Rashba SOC strength is modulated. As a result,
more transmission peaks lie in the bandgap in the SCJ of
S(m,n).

The spin-polarization can be tuned by changing both
the strength of Rashba SOC and the length of SC channel
in the centre of the SCJ. Figures 2d–2f present the spin
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Fig. 2. (Color online) Illustrate the spin-dependent transmis-
sion coefficients, the spin polarization, and the conductance
(G) as a function of the Rashba spin-orbit wave vector in the
SCJ of S(5, n) with different n, respectively. For transmission
coefficients: (a) n = 0, (b) n = 4 and (c) n = 8. The black solid
line corresponds to spin-up electrons, and the red dashed line
corresponds to spin-down electrons. For the spin polarization:
(d) n = 0, (e) n = 4 and (f) n = 8. And for the conductance:
(g) n = 0, (h) n = 4 and (i) n = 8, where the arrow im-
plies the conductance peak contributed by spin-up (↑) or spin-
down (↓) electrons. In all calculations in this work, we assume
m∗

s = 0.036me, m∗
f = me, and me is the free electron mass.

The Fermi wave vectors for spin-up and spin-down electrons
are set as kF↑ = 0.44 × 108 cm−1 and kF↓ = 1.05 × 108 cm−1,
respectively. The conduction-band mismatch between the SC
and FM is δE = 2.4 eV. All these calculated parameters are
reasonable for Fe and InAs-based heterostructures [15,16]. The
thicknesses of FM and SC have been set as df = 1 nm and
ds = 0.1 μm, respectively. And k0 = 1 × 105 cm−1, which can
be reached in experiments.

polarization against Rashba spin-orbit wave vector in the
SCJs of S(5, n) with different n. Obviously, the spin polar-
ization can be changed alternatively from positive to neg-
ative when the Rashba spin-orbit wave vector is varied.
Around resonant wave vectors, high spin polarization has
been observed and the spin polarization has been reversed
(as shown in Figs. 2d–2f). This feature originates from the
fact that resonant wave vectors are spin-dependent (as
shown in Figs. 2a–2c). On the other hand, because more
and more spin-dependent transmission peaks appear by
increasing n in the SCJ, multiple reversals of spin polar-
ization happen in the bandgap (as shown in Figs. 2e–2f).
Consequently, the spin polarization reversal and the re-
versal times for tunneling electrons can be modulated by
tuning the length of SC channel in the center of the SCJ.

It is worthwhile to study the electrical conductance of
the FM/SC SCJ. As shown in Figures 2g–2i, there exist
conductance peaks within the bandgap against the Rashba
spin-orbit wave vector in the SCJs of S(5, n) with different
n. The electrical conductance within the bandgap is about
e2/h at each resonant wave vector. As we have known, res-
onant wave vectors are spin-dependent in S(5, n). At the
resonant energy of spin-up electron, the transmission for
spin-down electron is close to zero. While at the resonant
energy of spin-down electron, the transmission for spin-
up electron is almost zero (as shown in Figs. 2a–2c). As
a result, the electrical conductance around the resonant
wave vector comes mainly from one kind of spin electrons.
Then fully spin-polarized conductance with the value of
e2/h can be observed within the bandgap. On the other
hand, more and more peaks with about e2/h appear in the
bandgap when n increases (shown in Figs. 2g−2i). Inter-
estingly, the conductance peaks contributed by spin-up or
spin-down electrons appear alternately in the bandgap.
For instance, the (2i − 1)th conductance peak mainly
comes from the spin-up electron, and the (2i)th conduc-
tance peak mainly comes from the spin-down electron in
the SCJ of S(5, n). Here i = 1 in the case of S(5, 0) (as
shown in Fig. 2g), i = 2 in the case of S(5, 4) (as shown
in Fig. 2h), and i = 3 in the case of S(5, 8) (as shown in
Fig. 2i). These features may have potential applications
in the designing of spin filters.

In order to understand the behavior of spin-up and
spin-down electrons clearly, the electronic charge distri-
butions in the SCJ have been studied. Figure 3 plots the
electronic charge distributions in the SCJ of S(5, 0) at dif-
ferent Rashba spin-orbit wave vectors. As discussed above,
there is a transmission peak for spin-up or spin-down
electrons in the bandgap of S(5, 0) (as shown in Fig. 2a).
The resonant modes for spin-up and spin-down electrons
in the bandgap are at the wave vectors of KR↑ ∼= 8.30k0

and KR↓ ∼= 8.82k0, respectively. For the spin-up electron
at KR↑, the electronic charge is almost symmetrically dis-
tributed (as shown in Fig. 3a and its inset). It is obvious
that the injected spin-up electrons can transport through
the whole SCJ. The transmitted wave has the same inten-
sity as the incident wave does, thereafter, the transmission
of spin-up electron becomes perfect at the wave vector of
KR↑. But differing with the extended states, some max-
ima of the wave envelope locate at the center of the SCJ.
The wave function of the spin-up resonant mode (shown
in Fig. 3a and its inset) exhibits the typical feature of
the bound states at energies above the potential barri-
ers [20]. While for the spin-down electron at KR↑, the elec-
tronic charge distribution decays exponentially (as shown
in Fig. 3b), which presents the feature of the localized
states. Therefore, the injected spin-up electron at KR↑ can
propagate through the whole SCJ, which corresponds to
the quasi-bound state at energies above the potential bar-
riers for spin-up electron. However, the spin-down electron
atKR↑ cannot propagate in the system, which corresponds
to the localized state for spin-down electron. The oppo-
site case is that the localized state is for spin-up electron,
but the quasi-bound state at energies above the potential
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Fig. 3. Shows the spin-dependent electronic charge distri-
butions in the SCJ of S(5, 0) when the Rashba spin-orbit
wave vector KR is different. In the case of KR = 8.30k0: (a)
spin-up electrons and (b) spin-down electrons. In the case of
KR = 8.82k0: (c) spin-up electrons and (d) spin-down elec-
trons. In the case of KR = 2.96k0 : (e) spin-up electrons and
(f) spin-down electrons. In the case of KR = 9.60k0: (g) spin-
up electrons and (h) spin-down electrons, respectively. In the
insets of 3a and 3d, y-axis is logarithmic scale.

barriers for spin-down electron. For example, at KR↓, the
spin-down electron can propagate through the whole SCJ
(as shown in Fig. 3d), while spin-up electron cannot prop-
agate in the system (as shown in Fig. 3c). We have also
plotted the extended states for both spin-up and spin-
down electrons when the wave vector is in the band and
electrons can propagate in the system (as shown in Figs. 3e
and 3f). Meanwhile, the localized states for both spin-up
and spin-down electrons can be observed when the wave
vector lies in the electronic bandgap and both types of
electron cannot propagate (as shown in Figs. 3g and 3h).
All these electronic states indeed determine the quantum
transport in the SCJ. This implies that by constructing
the microstructure, spin-dependent potential can be de-
signed and electronic properties of the materials can be
tailored, which may be applied in energy bandgap engi-
neering.

Furthermore, we would like to mention that in a real
FM/SC system, there usually exists Schottky barrier at
the interface. The Schottky barrier provides a natural tun-
nel barrier between a metal contact and a SC, which is
helpful for the injection of spin polarized electrons [9–12].
Meanwhile, the Schottky barrier has a strong effect on the
spin-transmission probabilities, which may lead to sharper
transmission peaks [4,5,15,16].

4 The inverse magnetoresistance in SCJs

It is well known that there is tunnel magnetoresistance
(TMR) in magnetic tunnel junctions (MTJs) consisting
of two thick FM layers and a thin insulator. According
to Julliere’s model [33], TMR in the MTJ is related to
the spin polarization of the electrodes independently and
usually it is positive. However, inverse TMR has been ob-
served experimentally in the MTJs [34–36], which means
that the conductance in the antiparallel magnetic config-
uration is higher than that in the parallel configuration.
And inverse (or negative) magnetoresistace has also been
found in fractal Pb thin film on Si(111) [37]. Both normal
and inverse TMRs have been observed in the nanowires
consisting of three layer-cobalt, Alq3 and nickel [38].

In order to investigate TMR in the SCJs, we switch
the magnetization of FM layers in the centre of SCJ from
parallel to antiparallel. For example, we change the mag-
netization of FM in both the 5th cell and the (5+n+1)th
cell in S(5, n). Now that we have already obtained the con-
ductance of the SCJ with S(5, n) in the parallel magnetic
configuration (as shown in Figs. 2g–2i), we then calculate
the conductance of corresponding SCJ in the antiparallel
magnetic configuration (as shown in Figs. 4a–4c). It is ob-
vious that compared with the parallel configuration, more
conductance peaks appear in antiparallel configuration.
And at some resonant wave vectors, the electrical con-
ductance comes from the contribution of single spin state.
Thereafter, the TMR in SCJs, which is given by equa-
tion (15), presents several interesting features (as shown
in Figs. 4d–4f). (i) There exist several dips of TMR in the
bandgap, and around each dip, inverse TMR is observed.
Because the conductance in the antiparallel magnetic con-
figuration is higher than that in the parallel configuration
at some wave vectors in the SCJ, inverse TMR is defi-
nitely obtained at those wave vectors. (ii) Once the con-
ductance peak in antiparallel magnetic configuration over-
laps with that in parallel configuration, the dip of TMR
is suppressed. (iii) With increasing n in the SCJ, large in-
verse TMR is obtained and more dips of inverse TMR is
found. As we know, with increasing n, more and more con-
ductance peaks appear and they are sharper in antiparallel
configuration (as shown in Figs. 4a–4c), thereafter, mul-
tiple deep dips of inverse TMR appear in the bandgap in
the SCJ. From this point of view, it is possible to use the
SCJs to optimize the TMR and realize SC-based devices
such as sensitive magnetic-field sensors.

The perfect transmission and inverse magnetoresis-
tance in FM/SC cascade junctions described above is pre-
dicted to occur at zero temperature. At the finite tempera-
ture the presence of effects such as the inelastic scattering
and phase breaking will destroy the coherent quantum in-
terference [13,14], and hence the zero-temperature results
will be smoothened [17]. Furthermore, the scatterings in-
cluding momentum and spin scattering can lead to the
broadening of the peaks [39]. This will decrease the ef-
ficiency of the spin filtering. The further investigation is
undertaken.
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Fig. 4. (Color online) (a)–(c) The conductance (G) against
the Rashba spin-orbit wave vector in the SCJ of S(5, n) with
different n, where the magnetization of FM in the central cell
is reversed. (a) n = 0, (b) n = 4, and (c) n = 8. Here the
arrow implies the conductance peak contributed by spin-up
(↑) or spin-down (↓) electrons. And (d)–(f) TMR in the SCJ
of S(5, n) when the Rashba spin-orbit wave vector is varied:
(d) n = 0, (e) n = 4, and (f) n = 8.

5 Summary

To summarize, we have investigated spin-dependent trans-
port in FM/SC SCJs. Multiple perfect transmissions for
spin-up or spin-down electrons have been found within the
bandgap against the Rashba spin-orbit wave vector. For
each spin state of electrons, the resonant wave vector and
the mode number of resonant transmissions therein can be
manipulated. Around resonant wave vector, spin polariza-
tion will be reversed, and fully spin-polarized conductance
peaks can be observed. The resonant transmissions origi-
nate from the spin-dependent quasi-bound states at ener-
gies above the potential barriers, which are demonstrated
by the electronic charge distributions in the system. If we
change the magnetization of FM in the centre of the SCJ,
inverse magnetoresistance can be observed. The investiga-
tions may be helpful in developing spin-dependent energy
bandgap engineering and have potential applications in
spin quantum devices.
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