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We present the electronic transport in the k-component Fibonacci (KCF) nanowires, in which k
different incommensurate intervals are arranged according to a substitution rule. For the KCF
nanowires with an identical k, by increasing the length of the nanowire, the minima in transmis-
sion extend gradually into the band gap over which the transmission is blocked. Meanwhile more
transmission peaks appear. For finite KCF nanowire, by increasing the number of different incom-
mensurate intervals k, the width of electronic band gap is enlarged. Moreover, when the value of k
is sufficiently large, the transmission is shut off, except at a few resonant energies. These properties
make it possible to use the KCF nanowires as switching devices. Furthermore, a dimensional spec-
trum of singularities associated with the transmission spectrum demonstrates that the electronic
propagation in the KCF nanowire shows multifractality. These investigations open a unique way to
control quantum transport in nanodevices.
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1. INTRODUCTION

With the development of micro-fabrication technology, the
feature size of microelectronic devices may reach several
tens of nanometers.1–2 It becomes very important to manip-
ulate the electron transport on nanometer scale, where
quantum interference plays an essential role. The electronic
behavior in nanostructures can be described by Landauer–
Büttiker theory.3–5 Based on the Landauer–Büttiker the-
ory, Pouthier et al. obtained a localization–delocalization
transition of electron through a set of metallic clusters
randomly attached to an adsorbed nanowire when the inci-
dent energy of electron coincides with the antiresonances
of a cluster.6 Actually, the localization–delocalization tran-
sition of electrons was first predicted by Dunlap et al.
in one-dimensional (1D) random-dimer (RD) model in
1990.7 Physically, electronic delocalization in RD-like sys-
tems originates from the internal structural symmetry (or
inverse symmetry) of the impurity cluster.7–9 And elec-
tronic transmission in symmetric metallic nanowires shows
some novel characteristics.10 Recently the systematic tun-
ing of electronic band structure of atomic-scale gold wires
has been demonstrated by controlling the density of impu-
rity atoms.11 Now that the electron behaviors in nanowires
depend critically upon the distribution of atoms, it is

∗Author to whom correspondence should be addressed.

interesting to investigate the electron transport in nanowires
with various configurations, such as periodic, quasiperi-
odic, and even other aperiodic structures.
One of the well-known examples in 1D quasiperiodic

systems is the Fibonacci sequence. Since Merlin et al.
reported the first realization of Fibonacci superlattices,12

much attention has been paid to the exotic wave phenom-
ena of Fibonacci systems in X-ray scattering spectra,13

optical transmission spectra,14�15 and propagation modes
of acoustic waves on corrugated surfaces.16 To the best
of our knowledge, there seems to have been no work on
the electron transport in nanowire with 1D aperiodic struc-
ture which contains more than two incommensurate inter-
vals. In this work, we present the electronic transport in
the k-component Fibonacci (KCF) nanowires, which con-
tain k incommensurate intervals Ai (i= 1�2� � � � � k) and can
be generated by the substitution rules A1 → A1Ak, Ak →
Ak−1� � � � �Ai → Ai−1� � � � �A2 → A1. The KCF sequence
can be periodic (k = 1), quasiperiodic (1 < k < 6), and
multifractal between quasiperiodicity and disorder (k ≥ 6).
Based on the transfer matrix method, the electronic trans-
mission in the KCF nanowires is calculated, which illus-
trates a rich structure. Moreover, a dimensional spectrum
of singularities associated with the transmission spectrum
demonstrates that the electron propagation in the KCF
nanowire shows multifractality. These investigations open
a unique way to control quantum transport in nanodevices.
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2. THE THEORETICAL MODEL

Firstly we give a description of the k-component Fibonacci
structures (KCFS).17�18 Consider the substitution S act-
ing on an alphabet of k elements A1, A2� � � � �Ai� � � � �Ak

according to the rule: S�A1 →A1Ak, Ak →Ak−1� � � � �Ai →
Ai−1� � � � �A2 → A1�. Thereafter, these k elements are
arranged in a KCF sequence. On the other hand, the
KCFS can also be described as a limit of the gener-
ations of sequence G�k�

n . Let G�k�
n = SnA1, it follows

G
�k�
0 = A1, G

�k�
1 = A1Ak, G

�k�
2 = A1AkAk−1� � � � �G

�k�
k−1 =

A1AkAk−1 � � �A3A2, and in general, G�k�
n =G

�k�
n−1+G

�k�
n−k. It

has been rigorously proven that the KCFS are quasiperi-
odic when 1< k < 6, while for k ≥ 6, the KCFS are non-
quasiperiodic, yet they still ordering.
Now consider the electron behavior in a host monatomic

chain, where a cluster of KCF is inserted. Assuming the
host chain is composed of atom A1 only, in the on-site
model, atoms A1, A2� � � � �Ai� � � � �Ak have the energies
of �1, �2� � � � � �i� � � � � �k, respectively. The nearest-hopping
integral is taken as the same constant V . Under tight-
binding approximation, the Schrödinger equation for a
spinless electron in 1D KCF chain can be written in the
matrix form of(
Cj+1

Cj

)
=
(
�E−�j�/V −1

1 0

)(
Cj

Cj−1

)
= Pj

(
Cj

Cj−1

)
(1)

where �j depends on the atom which occupies the jth
site, Pj is the transfer matrix that correlates the adjacent
site amplitudes Cj and Cj±1. The whole chain contains
three parts: the KCF cluster, its left part, and its right
part. The amplitudes of wave functions can be described
as Cj = eikj +re−ikj for the left part of the KCF cluster and
Cj = teikj for right part of the KCF cluster. Here r and t
are the reflection and the transmission amplitudes of KCF
cluster, respectively.
If the cluster of KCF occupies the sites from h+ 1 to

h+m, the total transfer matrix across the KCF cluster can
be expressed as P̄ = Ph+m−1 ·Ph+m−2 � � � Ph. For a given P̄ ,
the reflection amplitude r and transmission amplitude t
can be written as

r =−�2h �T �P̄�

�T �P̄�∗ � and t = �−m 2i sin k

�T �P̄�∗ (2)

respectively. Here

� = eik� � =
(
0 1

−1 0

)
��=

(
�

1

)

and �T is the transpose of �.
On the other hand, multifractal analysis is a tool for

characterizing the nature of a positive measure in a sta-
tistical sense.18–20 If a positive measure is covered with
boxes of size 	 and pi�	� is denoted as the probability
in the ith box, an exponent (singularity strength) �i can

be defined as pi�	�∼ 	�i . We count the number of boxes
N���d� where the probability pi has singularity strength
between � and �+d�, then f ��� can be loosely defined
as the fractal dimension of set of boxes with singularity
strength �. In the case of transmission spectrum, the trans-
mission coefficient is a positive quantity and the energy
space is a support. The weight of transmission coeffi-
cient in the transmission spectrum can be defined as pi =
�Ti�2/�

∑N
i=1 �Ti�2�, where Ti is the transmission coefficient

of electron with incident energy Ei = �a − 2V + i
, and

 denotes pace length. Due to the energy ranges from
�a−2V to �a+2V , N is set as N = 4V /
. The partition
function can then be expressed as

Z�q�=
N∑
i=1

p
q
i � Z′�q�= dZ/dq =

N∑
i=1

p
q
i lnpi (3)

where the parameter q provides a ‘microscope’ for explor-
ing the singular measure in different regions. For q > 1,
Z�q� amplifies the more singular regions of pi, while for
q < 1 it accentuates the less singular regions. For q = 1
the measure Z(1) replicates the original measure. The f (�)
curve of any finite sample is therefore available at a local
level, i.e., for a given energy space. The values of � and
f ��� are given by

�=− Z′�q�
Z�q� lnN

� f ���= 1
lnN

(
lnZ�q�− qZ′�q�

Z�q�

)
(4)

Besides, the generalized dimension Dq provides an alter-
native description of singular measure. It is defined as

Dq = �1/�q−1�� lim
	→0

ln
∑

i�pi�	��
q/ ln 	� (5)

Dq corresponds to scaling exponents for the qth moments
of the measure.

3. THE NUMERICAL CALCULATIONS

Based on the above analysis, we can carry out numeri-
cal calculations of electron transport. Figure 1 gives the
transmission coefficient T as a function of electron energy
for the three-component Fibonacci nanowires (k= 3) with
the generations G

�3�
8 , G�3�

10 , G
�3�
15 , and G

�3�
25 , respectively. It

is obvious that in the case of a very small number of
atoms, there is no total reflection, although there exist
some regions of minimum transmission. When the num-
ber of atoms becomes large, the minima in transmission
become extended gradually into the band gap where the
transmission is blocked. Generally, with increasing the
number of atoms in the nanowire, more and more transmis-
sion zones diminish gradually, and some of them approach
zero transmission. In this way, a one-dimensional elec-
tronic band gap is realized. Meanwhile, more transmission
peaks emerge. Most interestingly, some transmission peaks
locate in between the band gaps. This property suggests
potential applications in quantum interference devices.
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Fig. 1. Transmission coefficient T as a function of electron energy for
the three-component Fibonacci structures with the following generations:
(a) G

�3�
8 , (b) G

�3�
10 , (c) G

�3�
15 , and (d) G

�3�
25 , respectively, where �1 = 1�2,

�2 = 1�0, �3 = 0�8 and V = 1.0.

It is enlightening to compare the behaviors of the elec-
tron transport through KCF nanowires with different num-
bers of incommensurate intervals k. The calculations are
performed on the transmission of different KCF nanowires
with almost identical numbers of atoms. Figure 2 illus-
trates the transmission spectra for four KCF nanowires
with different k. It can be seen that with increasing k,
the band gaps are easily observed. It follows that the total
transmission over the spectral region decreases gradually
and much wider band gaps appear when k increases in the
KCF nanowires. Moreover, when the value of k is suffi-
ciently large, the transmission is basically shut off, except
at a few energies where resonant tunneling takes place. It
seems that if we consider the KCF nanowires for discrete
logic applications, sufficient noise margins and sharp tran-
sitions between logic levels might be easily achieved, due
to the fact that the ‘on’ and ‘off’ states are evident enough
as shown in Figures 2(c) and (d). From this point of view,
we suggest that the KCF structure might be a good candi-
date for use in the structural design of high-performance
quantum devices for digital applications.
In order to understand the behavior of electrons in

the KCF nanowire clearly, the electronic wave function
has been studied. The wave function of election can be
obtained by using the triangular matrix.21 Figure 3 presents
the wave functions in the KCF nanowire with G

�3�
15 when

the electron is close to or far away from the resonant
energies. It is obvious that the wave function is almost
extended (shown in Fig. 3(a)) if the electron energy is
close to the resonant energy E1. In other words, elec-
tron with the energy E1 can propagate through the whole
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Fig. 2. Transmission coefficient T as a function of energy for the
k-component Fibonacci structures with different numbers of incommen-
surate intervals k. The values of k, the generations, and the numbers of
atoms l are as follows: (a) k = 2, G�2�

12 , and l = 233, (b) k = 3, G�3�
15 , and

l = 277, (c) k = 4, G�4�
17 , and l = 250, (d) k = 5, G�5�

19 , and l = 245.

nanowire G
�3�
15 . Meanwhile, localized and intermediated

wave functions can be observed when the electronic
energy is far away from the resonant energy, as shown
in Figures 3(c) and (d), respectively. Therefore, in the
KCF nanowire, the transmission coefficient is almost not
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Fig. 3. Wave functions of the electron in the KCF nanowire G
�3�
15 . The

electronic state is almost extended when (a) E1 ≈ 1.02993270. The elec-
tron state is localized when (b) E2 ≈ 1.22242510. And the intermediate
state is shown in (c) E3 ≈−0.36080077.
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Fig. 4. (a) f ��� spectra and (b) plot of the generalized dimension Dq as
a function of q, for the transmission distributions of the KCF nanowires
where k = 2, 3, 4, 5, respectively.

suppressed if there is an extended electronic state. How-
ever, if the electronic state is intermediated or localized,
transmission coefficient is significantly decreased.
Now we illustrate the multifractality of the transmis-

sion spectra shown in Figures 2(a)–(d). We have calculated
the f ��� spectra and the generalized dimension accord-
ing to Eqs. (3)–(5) (as shown in Fig. 4). The quantity
f ��� is commonly the dimension of the set of energy E
in the transmission spectrum. There are several physical
meanings.
(i) The abscissa �0 of the summit of the f ��� curve,
which corresponds to q = 0, is the strength of a generic
singularity. When k increases, the fractal dimension of the
support f ��0� decreases correspondingly due to the width
of the electronic band gap is enlarged.
(ii) The extremes �min and �max, which represent the min-
imum and the maximum of the singularity exponent �.
By increasing k in the KCF nanowires, the value of 
�=
�max − �min also gradually increases. This implies that
the electron transmission measure of the KCF nanowires
approaches the behavior of a random system when k
increases.
(iii) The dimension of the set of transmission peaks f �1�
represents the dimension of the set of energy for which
the local singularity exponent � is less than unity.

As shown in Figure 4(a), when k increases, f �1� decreases
evidently. Therefore, different KCF nanowires exhibit dif-
ferent transmission distributions. On the other hand, the
generalized dimension Dq characterizes the nonuniformity
of the measure. The plots of Dq versus q in Figure 4(b)
correspond to the plots of f ��� versus � in Figure 4(a).
For some special values of q, one can take Dq as the
dimension of a special set.
(1) D0 for q = 0 is the dimension of the support as men-
tioned above, D0 = f ��0� < 1.
(2) For q = 1, f ���1��= ��1�= D1. The distance of D1

to unity is a faithful measure of how singular the trans-
mission measure is. Figure 4(b) shows D1 < D0 < 1. So
the transmission distribution of the KCF nanowires is def-
initely a fractal measure.
(3) D2 for q = 2 is the correlation dimension. We have
D2�k� < D2�k

′� in the KCF if k > k′.

It has been demonstrated that when k becomes larger, there
are fewer transmission peaks in the transmission spectrum
of the KCF nanowire and the electronic band gaps are
definitely enlarged. The above scaling analysis indicates
that the transmission spectra of the KCF (1< k < 6) are
singular continuous and possess multifractality.

4. SUMMARY

In summary, we have presented electronic transmission
and switch effect in KCF nanowires. Electronic band gap
structure is realized for the KCF nanowires with an iden-
tical k by increasing the length of the nanowire. For
finite KCF nanowire, by increasing the number of differ-
ent incommensurate intervals k, the width of electronic
band gap is enlarged. Moreover, a dimensional spectrum
of singularities associated with the transmission spectrum
demonstrates that the electron propagation in the KCF
nanowire shows multifractality. These investigations open
a unique way to control quantum transport in nanodevices.
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